BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12190128)

  • 1. Identifying the position of an ear from a laser scan: the significance for planning rehabilitation.
    Coward TJ; Scott BJ; Watson RM; Richards R
    Int J Oral Maxillofac Surg; 2002 Jun; 31(3):244-51. PubMed ID: 12190128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser scanning of the ear identifying the shape and position in subjects with normal facial symmetry.
    Coward TJ; Scott BJ; Watson RM; Richards R
    Int J Oral Maxillofac Surg; 2000 Feb; 29(1):18-23. PubMed ID: 10691137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of three methods to evaluate the position of an artificial ear on the deficient side of the face from a three-dimensional surface scan of patients with hemifacial microsomia.
    Coward TJ; Watson RM; Richards R; Scott BJ
    Int J Prosthodont; 2012; 25(2):160-5. PubMed ID: 22371838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between computerized tomography, magnetic resonance imaging, and laser scanning for capturing 3-dimensional data from a natural ear to aid rehabilitation.
    Coward TJ; Scott BJ; Watson RM; Richards R
    Int J Prosthodont; 2006; 19(1):92-100. PubMed ID: 16479767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of prosthetic ear models created from data captured by computerized tomography, magnetic resonance imaging, and laser scanning.
    Coward TJ; Scott BJ; Watson RM; Richards R
    Int J Prosthodont; 2007; 20(3):275-85. PubMed ID: 17580460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a morphing technique for predicting the position and size of an artificial ear in hemifacial microsomia patients.
    Coward TJ; Richards R; Scott BJ
    Int J Prosthodont; 2014; 27(5):451-7. PubMed ID: 25191888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between computerized tomography, magnetic resonance imaging, and laser scanning for capturing 3-dimensional data from an object of standard form.
    Coward TJ; Scott BJ; Watson RM; Richards R
    Int J Prosthodont; 2005; 18(5):405-13. PubMed ID: 16220806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphometry of the ear in Down's syndrome subjects. A three-dimensional computerized assessment.
    Sforza C; Dellavia C; Tartaglia GM; Ferrario VF
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):480-6. PubMed ID: 16053865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reproducibility of the head position for a laser scan using a novel morphometric analysis for orthognathic surgery.
    Soncul M; Bamber MA
    Int J Oral Maxillofac Surg; 2000 Apr; 29(2):86-90. PubMed ID: 10833142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of measuring facial morphology with a 3-dimensional laser scanning system.
    Kau CH; Richmond S; Zhurov AI; Knox J; Chestnutt I; Hartles F; Playle R
    Am J Orthod Dentofacial Orthop; 2005 Oct; 128(4):424-30. PubMed ID: 16214622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometry of the ear in north Sudanese subjects with Down syndrome: a three-dimensional computerized assessment.
    Sforza C; Elamin F; Rosati R; Lucchini MA; De Menezes M; Ferrario VF
    J Craniofac Surg; 2011 Jan; 22(1):297-301. PubMed ID: 21239923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Three-dimensional geometry of the proximal humerus and rotator cuff attachment and its utilization in shoulder arthroplasty].
    Hromádka R; Pokorný D; Popelka S; Jahoda D; Sosna A
    Acta Chir Orthop Traumatol Cech; 2006 Apr; 73(2):77-84. PubMed ID: 16735003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3-dimensional construction of the average 11-year-old child face: a clinical evaluation and application.
    Kau CH; Zhurov A; Richmond S; Bibb R; Sugar A; Knox J; Hartles F
    J Oral Maxillofac Surg; 2006 Jul; 64(7):1086-92. PubMed ID: 16781342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3-Dimensional Facial Morpho-Dynamic Database in the development of a prediction model in orthognathic surgery.
    Peretta R; Concheri G; Comelli D; Meneghello R; Galzignato PF; Ferronato G
    Prog Orthod; 2008; 9(2):8-19. PubMed ID: 19350055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of laser scanning techniques for quantifying changes in facial soft-tissue volume.
    Wilson I; Snape L; Fright R; Nixon M
    N Z Dent J; 1997 Dec; 93(414):110-3. PubMed ID: 9470442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proposal for soft tissue landmarks for craniofacial analysis using 3-dimensional laser scan imaging.
    Baik HS; Lee HJ; Lee KJ
    World J Orthod; 2006; 7(1):7-14. PubMed ID: 16548301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAD/CAM ear model and virtual construction of the mold.
    Ciocca L; Mingucci R; Gassino G; Scotti R
    J Prosthet Dent; 2007 Nov; 98(5):339-43. PubMed ID: 18021820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of combined maxillary and mandibular repositioning and of soft tissue prediction in relation to maxillary antero-superior repositioning combined with mandibular set back A computerized cephalometric evaluation of the immediate postsurgical outcome using the TIOPS planning system.
    Donatsky O; Bjørn-Jørgensen J; Hermund NU; Nielsen H; Holmqvist-Larsen M; Nerder PH
    J Craniomaxillofac Surg; 2009 Jul; 37(5):279-84. PubMed ID: 19188076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age- and sex-related changes in the normal human ear.
    Sforza C; Grandi G; Binelli M; Tommasi DG; Rosati R; Ferrario VF
    Forensic Sci Int; 2009 May; 187(1-3):110.e1-7. PubMed ID: 19356871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a wax ear by rapid-process modeling using stereolithography.
    Coward TJ; Watson RM; Wilkinson IC
    Int J Prosthodont; 1999; 12(1):20-7. PubMed ID: 10196824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.