These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12190404)

  • 1. Avalanche dynamics in wet granular materials.
    Tegzes P; Vicsek T; Schiffer P
    Phys Rev Lett; 2002 Aug; 89(9):094301. PubMed ID: 12190404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of correlations in the dynamics of wet granular avalanches.
    Tegzes P; Vicsek T; Schiffer P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051303. PubMed ID: 12786142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avalanche dynamics of granular materials under the slumping regime in a rotating drum as revealed by speckle visibility spectroscopy.
    Yang H; Li R; Kong P; Sun QC; Biggs MJ; Zivkovic V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042206. PubMed ID: 25974483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration.
    Amon DL; Niculescu T; Utter BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012203. PubMed ID: 23944450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lubrication effects on the flow of wet granular materials.
    Xu Q; Orpe AV; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031302. PubMed ID: 17930237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of volume fraction on granular avalanche dynamics.
    Gravish N; Goldman DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032202. PubMed ID: 25314432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Granular-front formation in free-surface flow of concentrated suspensions.
    Leonardi A; Cabrera M; Wittel FK; Kaitna R; Mendoza M; Wu W; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052204. PubMed ID: 26651686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of dry granular avalanches.
    Fischer R; Gondret P; Perrin B; Rabaud M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021302. PubMed ID: 18850826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum.
    Brewster R; Grest GS; Levine AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011305. PubMed ID: 19257028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow.
    Fischer R; Gondret P; Rabaud M
    Phys Rev Lett; 2009 Sep; 103(12):128002. PubMed ID: 19792460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shallow granular flows.
    Takagi D; McElwaine JN; Huppert HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031306. PubMed ID: 21517493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granular flows in a rotating drum: the scaling law between velocity and thickness of the flow.
    Félix G; Falk V; D'Ortona U
    Eur Phys J E Soft Matter; 2007 Jan; 22(1):25-31. PubMed ID: 17334686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of dynamical quantities in granular avalanches based on graph neural networks.
    Zhang L; Chen J; Zhang H; Huang D
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38038211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two scenarios for avalanche dynamics in inclined granular layers.
    Börzsönyi T; Halsey TC; Ecke RE
    Phys Rev Lett; 2005 May; 94(20):208001. PubMed ID: 16090290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical measurement of flow fluctuations to quantify cohesion in granular materials.
    Preud'homme N; Lumay G; Vandewalle N; Opsomer E
    Phys Rev E; 2021 Dec; 104(6-1):064901. PubMed ID: 35030871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instantaneous velocity profiles during granular avalanches.
    du Pont SC; Fischer R; Gondret P; Perrin B; Rabaud M
    Phys Rev Lett; 2005 Feb; 94(4):048003. PubMed ID: 15783603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady granular flows in a rotating tumbler.
    Pohlman NA; Ottino JM; Lueptow RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031302. PubMed ID: 19905105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erosion dynamics of a wet granular medium.
    Lefebvre G; Jop P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032205. PubMed ID: 24125259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avalanche dynamics on a rough inclined plane.
    Börzsönyi T; Halsey TC; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011306. PubMed ID: 18763947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches.
    Li X; Sovilla B; Jiang C; Gaume J
    Landslides; 2021; 18(10):3393-3406. PubMed ID: 34776814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.