These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12190418)

  • 1. Role of subsurface oxygen in oxide formation at transition metal surfaces.
    Todorova M; Li WX; Ganduglia-Pirovano MV; Stampfl C; Reuter K; Scheffler M
    Phys Rev Lett; 2002 Aug; 89(9):096103. PubMed ID: 12190418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial Subsurface Incorporation of Oxygen into Ru(0001): A Density Functional Theory Study.
    Cai JQ; Luo HJ; Tao XM; Tan MQ
    Chemphyschem; 2015 Dec; 16(18):3937-48. PubMed ID: 26456012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition metal surfaces under oxygen-rich conditions (abstract only).
    Seriani N
    J Phys Condens Matter; 2008 Feb; 20(6):064213. PubMed ID: 21693875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of nitride oxide adsorption on transition metal (111) surfaces: a first-principles investigation.
    Zeng ZH; Da Silva JL; Li WX
    Phys Chem Chem Phys; 2010 Mar; 12(10):2459-70. PubMed ID: 20449360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of subsurface oxygen on the reactivity of the Ag(111) surface.
    Xu Y; Greeley J; Mavrikakis M
    J Am Chem Soc; 2005 Sep; 127(37):12823-7. PubMed ID: 16159275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).
    Weaver JF; Zhang F; Pan L; Li T; Asthagiri A
    Acc Chem Res; 2015 May; 48(5):1515-23. PubMed ID: 25933250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).
    Gerrard AL; Weaver JF
    J Chem Phys; 2005 Dec; 123(22):224703. PubMed ID: 16375491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations.
    Murgida GE; Ganduglia-Pirovano MV
    Phys Rev Lett; 2013 Jun; 110(24):246101. PubMed ID: 25165940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of subsurface oxygen species created during oxidation of Ru(0001).
    Blume R; Niehus H; Conrad H; Böttcher A; Aballe L; Gregoratti L; Barinov A; Kiskinova M
    J Phys Chem B; 2005 Jul; 109(29):14052-8. PubMed ID: 16852764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemisorption and diffusion of hydrogen on surface and subsurface sites of flat and stepped nickel surfaces.
    Bhatia B; Sholl DS
    J Chem Phys; 2005 May; 122(20):204707. PubMed ID: 15945764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic hydrogen adsorption and incipient hydrogenation of the Mg(0001) surface: a density-functional theory study.
    Li Y; Zhang P; Sun B; Yang Y; Wei Y
    J Chem Phys; 2009 Jul; 131(3):034706. PubMed ID: 19624220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the general rule for the activation of the X-H bonds (X = C, N, O, S) induced by chemisorbed oxygen atoms.
    Xing B; Wang GC
    Phys Chem Chem Phys; 2014 Feb; 16(6):2621-9. PubMed ID: 24382588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The onset of sub-surface oxidation induced by defects in a chemisorbed oxygen layer.
    Li J; Li L; Zhou G
    J Chem Phys; 2015 Feb; 142(8):084701. PubMed ID: 25725745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of carbon species on Pd(111): competition between migration of C atoms to the subsurface interlayer and formation of Cn clusters on the surface.
    Kozlov SM; Yudanov IV; Aleksandrov HA; Rösch N
    Phys Chem Chem Phys; 2009 Dec; 11(46):10955-63. PubMed ID: 19924331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.
    Greeley J; Mavrikakis M
    J Phys Chem B; 2005 Mar; 109(8):3460-71. PubMed ID: 16851380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.
    Lanthony C; Guiltat M; Ducéré JM; Verdier A; Hémeryck A; Djafari-Rouhani M; Rossi C; Chabal YJ; Estève A
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15086-97. PubMed ID: 25089744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2013 Oct; 135(41):15425-42. PubMed ID: 24083571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy.
    Cinquini F; Delbecq F; Sautet P
    Phys Chem Chem Phys; 2009 Dec; 11(48):11546-56. PubMed ID: 20024427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsurface Carbon: A General Feature of Noble Metals.
    Piqué O; Koleva IZ; Viñes F; Aleksandrov HA; Vayssilov GN; Illas F
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1744-1748. PubMed ID: 30525271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.