BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12191479)

  • 21. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The A2453-C2499 wobble base pair in Escherichia coli 23S ribosomal RNA is responsible for pH sensitivity of the peptidyltransferase active site conformation.
    Bayfield MA; Thompson J; Dahlberg AE
    Nucleic Acids Res; 2004; 32(18):5512-8. PubMed ID: 15479786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer.
    Diedrich G; Spahn CM; Stelzl U; Schäfer MA; Wooten T; Bochkariov DE; Cooperman BS; Traut RR; Nierhaus KH
    EMBO J; 2000 Oct; 19(19):5241-50. PubMed ID: 11013226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state.
    Osterman IA; Khabibullina NF; Komarova ES; Kasatsky P; Kartsev VG; Bogdanov AA; Dontsova OA; Konevega AL; Sergiev PV; Polikanov YS
    Nucleic Acids Res; 2017 Jul; 45(12):7507-7514. PubMed ID: 28505372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center.
    Terasaka N; Hayashi G; Katoh T; Suga H
    Nat Chem Biol; 2014 Jul; 10(7):555-7. PubMed ID: 24907900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 23S rRNA positions essential for tRNA binding in ribosomal functional sites.
    Bocchetta M; Xiong L; Mankin AS
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3525-30. PubMed ID: 9520399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes.
    Rodriguez-Fonseca C; Amils R; Garrett RA
    J Mol Biol; 1995 Mar; 247(2):224-35. PubMed ID: 7707371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base-pairing between 23S rRNA and tRNA in the ribosomal A site.
    Kim DF; Green R
    Mol Cell; 1999 Nov; 4(5):859-64. PubMed ID: 10619032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unusual resistance of peptidyl transferase to protein extraction procedures.
    Noller HF; Hoffarth V; Zimniak L
    Science; 1992 Jun; 256(5062):1416-9. PubMed ID: 1604315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release.
    Youngman EM; Brunelle JL; Kochaniak AB; Green R
    Cell; 2004 May; 117(5):589-99. PubMed ID: 15163407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
    Cruz-Vera LR; New A; Squires C; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3140-6. PubMed ID: 17293420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Fragment reaction catalyzed by E. coli ribosomes].
    Kotusov VV; Kukhanova MK; Sal'nikova NE; Nikolaeva LV; Kraevskiĭ AA
    Mol Biol (Mosk); 1977; 11(3):671-6. PubMed ID: 379608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
    Beringer M; Rodnina MV
    Biol Chem; 2007 Jul; 388(7):687-91. PubMed ID: 17570820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions].
    Kukhanova MK; Kraevskiĭ AA; Gottikh BP
    Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA.
    Green R; Noller HF
    Biochemistry; 1999 Feb; 38(6):1772-9. PubMed ID: 10026257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How ribosomes make peptide bonds.
    Rodnina MV; Beringer M; Wintermeyer W
    Trends Biochem Sci; 2007 Jan; 32(1):20-6. PubMed ID: 17157507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein synthesis by ribosomes with tethered subunits.
    Orelle C; Carlson ED; Szal T; Florin T; Jewett MC; Mankin AS
    Nature; 2015 Aug; 524(7563):119-24. PubMed ID: 26222032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center.
    Kostopoulou ON; Papadopoulos G; Kouvela EC; Kalpaxis DL
    Pharmazie; 2013 Jul; 68(7):616-21. PubMed ID: 23923646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.