These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12191479)

  • 61. Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451.
    Erlacher MD; Lang K; Shankaran N; Wotzel B; Hüttenhofer A; Micura R; Mankin AS; Polacek N
    Nucleic Acids Res; 2005; 33(5):1618-27. PubMed ID: 15767286
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center.
    Kloss P; Xiong L; Shinabarger DL; Mankin AS
    J Mol Biol; 1999 Nov; 294(1):93-101. PubMed ID: 10556031
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Mutations in the Escherichia coli 23S rRNA increase the rate of peptidyl-tRNA dissociation from the ribosome].
    Maĭvali U; Saarma U; Remme Ia
    Mol Biol (Mosk); 2001; 35(4):666-71. PubMed ID: 11524953
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center.
    Marks J; Kannan K; Roncase EJ; Klepacki D; Kefi A; Orelle C; Vázquez-Laslop N; Mankin AS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12150-12155. PubMed ID: 27791002
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Yeast ribosomal protein deletion mutants possess altered peptidyltransferase activity and different sensitivity to cycloheximide.
    Dresios J; Panopoulos P; Frantziou CP; Synetos D
    Biochemistry; 2001 Jul; 40(27):8101-8. PubMed ID: 11434779
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center.
    Yanshina DD; Bulygin KN; Malygin AA; Karpova GG
    FEBS J; 2015 Apr; 282(8):1554-66. PubMed ID: 25702831
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interaction of arginine with the ribosomal peptidyl transferase centre.
    Palacián E; Vázquez D
    Eur J Biochem; 1979 Nov; 101(2):469-73. PubMed ID: 391558
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination.
    Polacek N; Gomez MJ; Ito K; Xiong L; Nakamura Y; Mankin A
    Mol Cell; 2003 Jan; 11(1):103-12. PubMed ID: 12535525
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanism of ribosome assisted protein folding: a new insight into rRNA functions.
    Samanta D; Das A; Bhattacharya A; Basu A; Das D; DasGupta C
    Biochem Biophys Res Commun; 2009 Jun; 384(2):137-40. PubMed ID: 19401192
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Puromycin-rRNA interaction sites at the peptidyl transferase center.
    Rodriguez-Fonseca C; Phan H; Long KS; Porse BT; Kirillov SV; Amils R; Garrett RA
    RNA; 2000 May; 6(5):744-54. PubMed ID: 10836795
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Different substrate-dependent transition states in the active site of the ribosome.
    Kuhlenkoetter S; Wintermeyer W; Rodnina MV
    Nature; 2011 Jul; 476(7360):351-4. PubMed ID: 21804565
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Peptidyl transferase substrate activity and inhibition of protein biosynthesis by a hydrophilic-aminoacyl analogue of puromycin.
    Vince R; Fong KL
    Biochem Biophys Res Commun; 1978 Mar; 81(2):559-64. PubMed ID: 352348
    [No Abstract]   [Full Text] [Related]  

  • 74. Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size.
    Sothiselvam S; Neuner S; Rigger L; Klepacki D; Micura R; Vázquez-Laslop N; Mankin AS
    Cell Rep; 2016 Aug; 16(7):1789-99. PubMed ID: 27498876
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evidence for a tRNA/rRNA interaction site within the peptidyltransferase center of the Escherichia coli ribosome.
    Marconi RT; Hill WE
    Biochemistry; 1989 Jan; 28(2):893-9. PubMed ID: 2540810
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Possible involvement of Escherichia coli 23S ribosomal RNA in peptide bond formation.
    Nitta I; Ueda T; Watanabe K
    RNA; 1998 Mar; 4(3):257-67. PubMed ID: 9510328
    [TBL] [Abstract][Full Text] [Related]  

  • 78. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Peptidyl-puromycin synthesis by free and membrane-bound ribosomes.
    Kuehl L; Robison W
    Biochim Biophys Acta; 1979 Jul; 563(2):454-65. PubMed ID: 465499
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An apparent conformational change in tRNA(Phe) that is associated with the peptidyl transferase reaction.
    Odom OW; Hardesty B
    Biochimie; 1987 Sep; 69(9):925-38. PubMed ID: 3126830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.