These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12191479)

  • 81. EFG-independent translocation of the mRNA:tRNA complex is promoted by modification of the ribosome with thiol-specific reagents.
    Southworth DR; Brunelle JL; Green R
    J Mol Biol; 2002 Dec; 324(4):611-23. PubMed ID: 12460565
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Mutational analysis of the donor substrate binding site of the ribosomal peptidyltransferase center.
    Saarma U; Spahn CM; Nierhaus KH; Remme J
    RNA; 1998 Feb; 4(2):189-94. PubMed ID: 9570318
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.
    Poulsen SM; Karlsson M; Johansson LB; Vester B
    Mol Microbiol; 2001 Sep; 41(5):1091-9. PubMed ID: 11555289
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Analysis of the active site of the ribosome by site-directed mutagenesis.
    Kim DF; Semrad K; Green R
    Cold Spring Harb Symp Quant Biol; 2001; 66():119-26. PubMed ID: 12762014
    [No Abstract]   [Full Text] [Related]  

  • 85. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit.
    Steitz TA
    FEBS Lett; 2005 Feb; 579(4):955-8. PubMed ID: 15680981
    [TBL] [Abstract][Full Text] [Related]  

  • 86. fMet-tRNA F Met binding and peptidyl transferase function in free and bound ribosomes from normal and puromycin aminonucleoside-treated rats.
    Innanen VT; Nicholls DM
    Chem Biol Interact; 1975 Nov; 11(5):431-9. PubMed ID: 1192550
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Substrate-assisted catalysis of peptide bond formation by the ribosome.
    Weinger JS; Parnell KM; Dorner S; Green R; Strobel SA
    Nat Struct Mol Biol; 2004 Nov; 11(11):1101-6. PubMed ID: 15475967
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A conserved base-pair between tRNA and 23 S rRNA in the peptidyl transferase center is important for peptide release.
    Feinberg JS; Joseph S
    J Mol Biol; 2006 Dec; 364(5):1010-20. PubMed ID: 17045291
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation.
    Tan GT; DeBlasio A; Mankin AS
    J Mol Biol; 1996 Aug; 261(2):222-30. PubMed ID: 8757289
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains.
    Nitta I; Kamada Y; Noda H; Ueda T; Watanabe K
    Science; 1998 Jul; 281(5377):666-9. PubMed ID: 9685252
    [TBL] [Abstract][Full Text] [Related]  

  • 91. [Stimulation of peptidyltransferase activity of 50S subunits by alcohols].
    Maĭmets TO; Remme IaL; Villems RL
    Mol Biol (Mosk); 1985; 19(3):617-22. PubMed ID: 3897829
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center.
    Rodnina MV
    Curr Opin Struct Biol; 2013 Aug; 23(4):595-602. PubMed ID: 23711800
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Sequence complementarity at the ribosomal Peptidyl Transferase Centre implies self-replicating origin.
    Agmon I
    FEBS Lett; 2017 Oct; 591(20):3252-3258. PubMed ID: 28786485
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome.
    Nissley AJ; Penev PI; Watson ZL; Banfield JF; Cate JHD
    Nucleic Acids Res; 2023 Feb; 51(4):1880-1894. PubMed ID: 36660825
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modulating the activity of the peptidyl transferase center of the ribosome.
    Beringer M
    RNA; 2008 May; 14(5):795-801. PubMed ID: 18369182
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation.
    Simonović M; Steitz TA
    Biochim Biophys Acta; 2009; 1789(9-10):612-23. PubMed ID: 19595805
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates.
    Wohlgemuth I; Brenner S; Beringer M; Rodnina MV
    J Biol Chem; 2008 Nov; 283(47):32229-35. PubMed ID: 18809677
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Crystal Structures of the uL3 Mutant Ribosome: Illustration of the Importance of Ribosomal Proteins for Translation Efficiency.
    Mailliot J; Garreau de Loubresse N; Yusupova G; Meskauskas A; Dinman JD; Yusupov M
    J Mol Biol; 2016 May; 428(10 Pt B):2195-202. PubMed ID: 26906928
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Trial for peptide bond formation using model molecules based on the interactions between the CCA sequence of tRNA and 23S rRNA.
    Tamura K; Schimmel P
    Nucleic Acids Symp Ser; 2000; (44):251-2. PubMed ID: 12903363
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A two-step chemical mechanism for ribosome-catalysed peptide bond formation.
    Hiller DA; Singh V; Zhong M; Strobel SA
    Nature; 2011 Jul; 476(7359):236-9. PubMed ID: 21765427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.