These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12191755)

  • 1. An implantable electrode design for both chronic in vivo nerve recording and axon stimulation in freely behaving crayfish.
    Gruhn M; Rathmayer W
    J Neurosci Methods; 2002 Jul; 118(1):33-40. PubMed ID: 12191755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of nerve impulse in slowly adapting stretch receptor of crayfish.
    Ringham GL
    J Neurophysiol; 1971 Sep; 34(5):773-84. PubMed ID: 5097156
    [No Abstract]   [Full Text] [Related]  

  • 3. Miniature motorized microdrive and commutator system for chronic neural recording in small animals.
    Fee MS; Leonardo A
    J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lightweight telemetry system for recording neuronal activity in freely behaving small animals.
    Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML
    J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
    Jeantet Y; Cho YH
    J Neurosci Methods; 2003 Oct; 129(2):129-34. PubMed ID: 14511816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.
    Le Ray D; Combes D; Déjean C; Cattaert D
    J Neurophysiol; 2005 Aug; 94(2):1013-27. PubMed ID: 15829591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efferent regulations of the abdominal stretch receptors of the crayfish.
    Ilyinsky OB; Spivachenko DL; Shtirbu EI
    J Exp Biol; 1974 Dec; 61(3):781-98. PubMed ID: 4443757
    [No Abstract]   [Full Text] [Related]  

  • 9. Simultaneous recording of the field-EPSP as well as the population spike in the CA1 region in freely moving rats by using a fixed "double"-recording electrode.
    Scherf T; Frey JU; Frey S
    J Neurosci Methods; 2010 Apr; 188(1):1-6. PubMed ID: 20105443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale neural ensemble recording in the brains of freely behaving mice.
    Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ
    J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronically implanted electrodes for repeated stimulation and recording of spinal cord potentials.
    Ondrejcák T; Vanický I; Gálik J; Saganová K
    J Neurosci Methods; 2005 Jan; 141(1):125-34. PubMed ID: 15585296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Firing properties of the soma and axon of the abdominal stretch receptor neurons in the crayfish (Astacus leptodactylus).
    Purali N
    Gen Physiol Biophys; 2002 Jun; 21(2):205-26. PubMed ID: 12236549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The method of isolation of the crayfish abdominal stretch receptor maintaining a connection of the sensory neuron to the ventral nerve cord ganglion.
    Khaitin AM; Rudkovskii MV; Uzdensky AB
    Invert Neurosci; 2015; 15(1):176. PubMed ID: 25374161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration electrode units: implants for recording from single peripheral nerve fibers in freely moving animals.
    Mannard A; Stein RB; Charles D
    Science; 1974 Feb; 183(4124):547-9. PubMed ID: 4809567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
    Pomberger T; Hage SR
    J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect activation of nerve cells by electrical pulses applied extracellularly.
    Gustafsson B; Jankowska E
    J Physiol; 1976 Jun; 258(1):33-61. PubMed ID: 940071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chronically implantable, hybrid cannula-electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals.
    Greger B; Kateb B; Gruen P; Patterson PH
    J Neurosci Methods; 2007 Jul; 163(2):321-5. PubMed ID: 17499854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered impulse activity modifies synaptic physiology and mitochondria in crayfish phasic motor neurons.
    Nguyen PV; Atwood HL
    J Neurophysiol; 1994 Dec; 72(6):2944-55. PubMed ID: 7897501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recordings of neural circuit activation in freely behaving animals.
    Herberholz J
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19625988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.