BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12192524)

  • 1. Conversion of fatty acids by Bacillus sphaericus-like organisms.
    Kuo TM; Nakamura LK; Lanser AC
    Curr Microbiol; 2002 Oct; 45(4):265-71. PubMed ID: 12192524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of oleic acid, ricinoleic acid and linoleic acid conversions among Pseudomonas aeruginosa strains.
    Kuo TM; Nakamura LK
    Curr Microbiol; 2004 Oct; 49(4):261-6. PubMed ID: 15386114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens.
    Kim BN; Yeom SJ; Oh DK
    Biotechnol Lett; 2011 May; 33(5):993-7. PubMed ID: 21207107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis.
    Seo MH; Kim KR; Oh DK
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8987-95. PubMed ID: 23377790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of oxygenated fatty acids from vegetable oils by Flavobacterium sp. strain DS5.
    Heo SH; Hou CT; Kim BS
    N Biotechnol; 2009 Oct; 26(1-2):105-8. PubMed ID: 19818319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Biotransformation of Oleic Acid: New Findings on the Formation of γ-Dodecalactone and 10-Ketostearic Acid in the Culture of
    Boratyński F; Szczepańska E; De Simeis D; Serra S; Brenna E
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32630666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The production of 10-hydroxystearic and 10-ketostearic acids is an alternative route of oleic acid transformation by the ruminal microbiota in cattle.
    Jenkins TC; Abughazaleh AA; Freeman S; Thies EJ
    J Nutr; 2006 Apr; 136(4):926-31. PubMed ID: 16549452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of 10-ketostearic acid and 10-hydroxystearic acid by strains of Sphingobacterium thalpophilum isolated from composted manure.
    Kuo TM; Lanser AC; Nakamura LK; Hou CT
    Curr Microbiol; 2000 Feb; 40(2):105-9. PubMed ID: 10594223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of long chain fatty acids on glucose fermentation under mesophilic conditions.
    Lalman JA; Komjarova I
    Environ Technol; 2004 Apr; 25(4):391-401. PubMed ID: 15214444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Property control of sophorolipids: influence of fatty acid substrate and blending.
    Ashby RD; Solaiman DK; Foglia TA
    Biotechnol Lett; 2008 Jun; 30(6):1093-100. PubMed ID: 18264681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography.
    Waddington E; Sienuarine K; Puddey I; Croft K
    Anal Biochem; 2001 May; 292(2):234-44. PubMed ID: 11355856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes.
    Sahin N; Akoh CC; Karaali A
    J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3.
    Kuo TM; Kim H; Hou CT
    Curr Microbiol; 2001 Sep; 43(3):198-203. PubMed ID: 11400070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophages transfer [14C]-labelled fatty acids to pancreatic islets in culture.
    Garcia JR; Curi R; Martins EF; Carpinelli AR
    Cell Biochem Funct; 2001 Mar; 19(1):11-7. PubMed ID: 11223866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared retronasal identifications of vapor-phase 18-carbon fatty acids.
    Chukir T; Darlington RB; Halpern BP
    Chem Senses; 2013 May; 38(4):343-53. PubMed ID: 23424022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis.
    Kim BN; Joo YC; Kim YS; Kim KR; Oh DK
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):929-37. PubMed ID: 22189865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia.
    Joo YC; Seo ES; Kim YS; Kim KR; Park JB; Oh DK
    J Biotechnol; 2012 Mar; 158(1-2):17-23. PubMed ID: 22261174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the formation of 10-hydroxystearic acid from oleic acid by a ruminal strain of Enterococcus faecalis.
    Hudson JA; Mackenzie CA; Joblin KN
    Appl Microbiol Biotechnol; 1996 Apr; 45(3):404-7. PubMed ID: 8639306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development.
    Wilson RA; Chang PK; Dobrzyn A; Ntambi JM; Zarnowski R; Keller NP
    Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 10-Ketostearic Acid from Oleic Acid by Flavobacterium sp. Strain DS5 (NRRL B-14859).
    Hou CT
    Appl Environ Microbiol; 1994 Oct; 60(10):3760-3. PubMed ID: 16349414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.