These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12193631)

  • 21. Analysis of fruE, a novel developmental gene of Myxococcus xanthus.
    Akiyama T; Komano T
    J Mol Microbiol Biotechnol; 2003; 6(3-4):164-73. PubMed ID: 15153769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of the Omega4499 regulatory region controlling developmental expression of a Myxococcus xanthus cytochrome P-450 system.
    Fisseha M; Biran D; Kroos L
    J Bacteriol; 1999 Sep; 181(17):5467-75. PubMed ID: 10464222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development.
    Jelsbak L; Givskov M; Kaiser D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3010-5. PubMed ID: 15668379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect.
    Kashefi K; Hartzell PL
    Mol Microbiol; 1995 Feb; 15(3):483-94. PubMed ID: 7783619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression.
    Yang C; Kaplan HB
    J Bacteriol; 1997 Dec; 179(24):7759-67. PubMed ID: 9401035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development.
    Ossa F; Diodati ME; Caberoy NB; Giglio KM; Edmonds M; Singer M; Garza AG
    J Bacteriol; 2007 Dec; 189(23):8474-83. PubMed ID: 17905995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus.
    McLoon AL; Boeck ME; Bruckskotten M; Keyel AC; Søgaard-Andersen L
    BMC Genomics; 2021 Nov; 22(1):784. PubMed ID: 34724903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of asgE expression during growth and development of Myxococcus xanthus.
    Garza AG; Harris BZ; Greenberg BM; Singer M
    J Bacteriol; 2000 Dec; 182(23):6622-9. PubMed ID: 11073904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The asgE locus is required for cell-cell signalling during Myxococcus xanthus development.
    Garza AG; Harris BZ; Pollack JS; Singer M
    Mol Microbiol; 2000 Feb; 35(4):812-24. PubMed ID: 10692158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus.
    Rolbetzki A; Ammon M; Jakovljevic V; Konovalova A; Søgaard-Andersen L
    Dev Cell; 2008 Oct; 15(4):627-34. PubMed ID: 18854146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus.
    Nielsen M; Rasmussen AA; Ellehauge E; Treuner-Lange A; Søgaard-Andersen L
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2171-2183. PubMed ID: 15256560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of dsp mutations on the cell-to-cell transmission of CsgA in Myxococcus xanthus.
    Li SF; Shimkets LJ
    J Bacteriol; 1993 Jun; 175(11):3648-52. PubMed ID: 8501068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development.
    Viswanathan P; Singer M; Kroos L
    J Bacteriol; 2006 May; 188(9):3246-56. PubMed ID: 16621817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus.
    Ueki T; Inouye S
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8782-7. PubMed ID: 12851461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus.
    Thöny-Meyer L; Kaiser D
    J Bacteriol; 1993 Nov; 175(22):7450-62. PubMed ID: 7693658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Propionyl coenzyme A carboxylase is required for development of Myxococcus xanthus.
    Kimura Y; Sato R; Mimura K; Sato M
    J Bacteriol; 1997 Nov; 179(22):7098-102. PubMed ID: 9371458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus.
    Licking E; Gorski L; Kaiser D
    J Bacteriol; 2000 Jun; 182(12):3553-8. PubMed ID: 10852889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic suppression analysis of an asgA missense mutation in Myxococcus xanthus.
    Dunmire V; Tatar LD; Plamann L
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1299-1306. PubMed ID: 10411256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasensitive Response of Developing Myxococcus xanthus to the Addition of Nutrient Medium Correlates with the Level of MrpC.
    Hoang Y; Kroos L
    J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30181127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.