BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12193784)

  • 21. Structural and functional diversities among mu-conotoxins targeting TTX-resistant sodium channels.
    Zhang MM; Fiedler B; Green BR; Catlin P; Watkins M; Garrett JE; Smith BJ; Yoshikami D; Olivera BM; Bulaj G
    Biochemistry; 2006 Mar; 45(11):3723-32. PubMed ID: 16533055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Where Does All the Poison Go? Investigating Toxicokinetics of Newt (Taricha) Tetrodotoxin (TTX) in Garter Snakes (Thamnophis).
    Robinson KE; Moniz HA; Stokes AN; Feldman CR
    J Chem Ecol; 2024 Jun; ():. PubMed ID: 38842636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EVOLUTIONARY RESPONSE OF PREDATORS TO DANGEROUS PREY: PREADAPTATION AND THE EVOLUTION OF TETRODOTOXIN RESISTANCE IN GARTER SNAKES.
    Motychak JE; Brodie ED; Brodie ED
    Evolution; 1999 Oct; 53(5):1528-1535. PubMed ID: 28565572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TETRODOTOXIN RESISTANCE IN GARTER SNAKES: AN EVOLUTIONARY RESPONSE OF PREDATORS TO DANGEROUS PREY.
    Brodie ED; Brodie ED
    Evolution; 1990 May; 44(3):651-659. PubMed ID: 28567972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing the Natural and Anthropogenic Sodium Channel Blockers Tetrodotoxin and Indoxacarb in Garter Snakes.
    Neuman-Lee LA; Brodie ED; Hansen T; Brodie ED; French SS
    J Exp Zool A Ecol Genet Physiol; 2016 Apr; 325(4):255-64. PubMed ID: 27074769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution.
    Brodie ED; Feldman CR; Hanifin CT; Motychak JE; Mulcahy DG; Williams BL; Brodie ED
    J Chem Ecol; 2005 Feb; 31(2):343-56. PubMed ID: 15856788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying tetrodotoxin levels in the California newt using a non-destructive sampling method.
    Bucciarelli GM; Li A; Zimmer RK; Kats LB; Green DB
    Toxicon; 2014 Mar; 80():87-93. PubMed ID: 24467994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolutionary origins of beneficial alleles during the repeated adaptation of garter snakes to deadly prey.
    Feldman CR; Brodie ED; Brodie ED; Pfrender ME
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13415-20. PubMed ID: 19666534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-effect mutations generate trade-off between predatory and locomotor ability during arms race coevolution with deadly prey.
    Hague MTJ; Toledo G; Geffeney SL; Hanifin CT; Brodie ED; Brodie ED
    Evol Lett; 2018 Aug; 2(4):406-416. PubMed ID: 30283691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetrodotoxin levels in larval and metamorphosed newts (Taricha granulosa) and palatability to predatory dragonflies.
    Gall BG; Stokes AN; French SS; Schlepphorst EA; Brodie ED; Brodie ED
    Toxicon; 2011 Jun; 57(7-8):978-83. PubMed ID: 21459104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicity and population structure of the Rough-Skinned Newt (Taricha granulosa) outside the range of an arms race with resistant predators.
    Hague MT; Avila LA; Hanifin CT; Snedden WA; Stokes AN; Brodie ED; Brodie ED
    Ecol Evol; 2016 May; 6(9):2714-24. PubMed ID: 27066249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary history of a complex adaptation: tetrodotoxin resistance in salamanders.
    Hanifin CT; Gilly WF
    Evolution; 2015 Jan; 69(1):232-44. PubMed ID: 25346116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ripple effects of clines from coevolutionary hotspots to coldspots.
    Thompson JN
    Mol Ecol; 2023 Aug; 32(16):4461-4463. PubMed ID: 37296535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. To stress or not to stress: Physiological responses to tetrodotoxin in resistant gartersnakes vary by sex.
    Neuman-Lee LA; Brodie ED; Hansen T; Brodie ED; French SS
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jul; 209():34-40. PubMed ID: 28380330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Conversion Facilitates the Adaptive Evolution of Self-Resistance in Highly Toxic Newts.
    Gendreau KL; Hornsby AD; Hague MTJ; McGlothlin JW
    Mol Biol Evol; 2021 Sep; 38(10):4077-4094. PubMed ID: 34129031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa.
    Hanifin CT; Brodie ED; Brodie ED
    Toxicon; 2004 Mar; 43(3):243-9. PubMed ID: 15033321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Every breath you take: assessing metabolic costs of toxin resistance in garter snakes (Thamnophis).
    Moniz HA; Richard MA; Gienger CM; Feldman CR
    Integr Zool; 2022 Jul; 17(4):567-580. PubMed ID: 34254727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coevolution with toxic prey produces functional trade-offs in sodium channels of predatory snakes.
    Del Carlo RE; Reimche JS; Moniz HA; Hague MTJ; Agarwal SR; Brodie ED; Brodie ED; Leblanc N; Feldman CR
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotypic mismatches reveal escape from arms-race coevolution.
    Hanifin CT; Brodie ED; Brodie ED
    PLoS Biol; 2008 Mar; 6(3):e60. PubMed ID: 18336073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus.
    Hanifin CT; Kudo Y; Yotsu-Yamashita M
    Prog Chem Org Nat Prod; 2022; 118():101-130. PubMed ID: 35416518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.