BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12194281)

  • 1. Intrachromosomal exchange aberrations predicted on the basis of the globular interphase chromosome model.
    Andreev SG; Eidelman Y
    Radiat Prot Dosimetry; 2002; 99(1-4):193-6. PubMed ID: 12194281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-response curves for X-ray induced interchanges and interarm intrachanges in human lymphocytes using arm-specific probes for chromosome 1.
    Boei JJ; Vermeulen S; Natarajan AT
    Mutat Res; 1998 Aug; 404(1-2):45-53. PubMed ID: 9729269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Globular model of interphase chromosome and intrachromosomal exchange aberrations].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 1999; 39(1):10-20. PubMed ID: 10347593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations.
    Boei JJ; Vermeulen S; Mullenders LH; Natarajan AT
    Int J Radiat Biol; 2001 Aug; 77(8):847-57. PubMed ID: 11571018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LET dependence of yield ratios of radiation-induced intra- and interchromosomal aberrations in human lymphocytes.
    Bauchinger M; Schmid E
    Int J Radiat Biol; 1998 Jul; 74(1):17-25. PubMed ID: 9687971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-arm and interarm chromosome intrachanges: tools for probing the geometry and dynamics of chromatin.
    Sachs RK; Brenner DJ; Chen AM; Hahnfeldt P; Hlatky LR
    Radiat Res; 1997 Oct; 148(4):330-40. PubMed ID: 9339949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rejoining pathways underlying intrachange formation depend on interphase chromosome structure].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 2001; 41(5):469-74. PubMed ID: 11721341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome inter- and intrachanges detected by arm-specific DNA probes in the progeny of human lymphocytes exposed to energetic heavy ions.
    Pignalosa D; Bertucci A; Gialanella G; Grossi G; Manti L; Pugliese M; Scampolia P; Durante M
    Radiat Res; 2008 Oct; 170(4):458-66. PubMed ID: 19024653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.
    Chen AM; Lucas JN; Simpson PJ; Griffin CS; Savage JR; Brenner DJ; Hlatky LR; Sachs RK
    Radiat Res; 1997 Nov; 148(5 Suppl):S93-101. PubMed ID: 9355862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational model of dose response for low-LET-induced complex chromosomal aberrations.
    Eidelman YA; Andreev SG
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):80-5. PubMed ID: 25897145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interphase chromosome positioning affects the spectrum of radiation-induced chromosomal aberrations.
    Boei JJ; Fomina J; Darroudi F; Nagelkerke NJ; Mullenders LH
    Radiat Res; 2006 Aug; 166(2):319-26. PubMed ID: 16881732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetic effects of low-dose radiation with different LET in human peripheral blood lymphocytes.
    Nasonova EA; Shmakova NL; Komova OV; Mel'nikova LA; Fadeeva TA; Krasavin EA; Ritter S
    Radiat Environ Biophys; 2006 Nov; 45(4):307-12. PubMed ID: 17031661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome aberrations as biomarkers of radiation exposure: modelling basic mechanisms.
    Ballarini F; Ottolenghi A
    Adv Space Res; 2003; 31(6):1557-68. PubMed ID: 12971411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation.
    Friedland W; Kundrát P
    Mutat Res; 2013 Aug; 756(1-2):213-23. PubMed ID: 23811166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequencies of X-ray induced pericentric inversions and centric rings in human blood lymphocytes detected by FISH using chromosome arm specific DNA libraries.
    Natarajan AT; Boei JJ; Vermeulen S; Balajee AS
    Mutat Res; 1996 Nov; 372(1):1-7. PubMed ID: 9003525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2018 Apr; 64():45-52. PubMed ID: 29494834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation induced chromosome aberrations: some biophysical considerations.
    Chadwick KH; Leenhouts HP
    Mutat Res; 1998 Aug; 404(1-2):113-7. PubMed ID: 9729318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrachanges as part of complex chromosome-type exchange aberrations.
    Boei JJ; Vermeulen S; Moser J; Mullenders LH; Natarajan AT
    Mutat Res; 2002 Jul; 504(1-2):47-55. PubMed ID: 12106645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological dosimetry by interphase chromosome painting.
    Durante M; George K; Yang TC
    Radiat Res; 1996 Jan; 145(1):53-60. PubMed ID: 8532837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.