These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12194318)

  • 21. Dependence of nanodosimetric spectra on the sensitive volume length and ion drift in an ion-counting nanodosemeter.
    Shchemelinin S; Hilgers G; Gargioni E; Grosswendt B; Breskin A; Chechik R
    Radiat Prot Dosimetry; 2006; 122(1-4):446-50. PubMed ID: 17213217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.
    Rollet S; Autischer M; Beck P; Latocha M
    Radiat Prot Dosimetry; 2007; 125(1-4):425-8. PubMed ID: 17277327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response of a lithium gadolinium borate scintillator in monoenergetic neutron fields.
    Williams AM; Beeley PA; Spyrou NM
    Radiat Prot Dosimetry; 2004; 110(1-4):497-502. PubMed ID: 15353698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of a high sensitivity multi-element tissue equivalent proportional counter for radiation protection neutron monitoring measurements.
    Aslam ; Waker AJ
    Health Phys; 2010 May; 98(5):692-703. PubMed ID: 20386199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of the measured ionisation-cluster distributions of alpha-particles in nanometric volumes of propane.
    De Nardo L; Colautti P; Grosswendt B
    Radiat Prot Dosimetry; 2006; 122(1-4):427-31. PubMed ID: 17158118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active neutron dosemeters based on microdosimetric principles: research studies.
    Ménard S; Chau Q; Lahaye T
    Radiat Prot Dosimetry; 2002; 99(1-4):375-6. PubMed ID: 12194330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.
    Waker AJ; Aslam
    Radiat Res; 2011 Jun; 175(6):806-13. PubMed ID: 21476858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neutron spectrometry in mixed fields: NE213/BC501A liquid scintillation spectrometers.
    Klein H
    Radiat Prot Dosimetry; 2003; 107(1-3):95-109. PubMed ID: 14756170
    [No Abstract]   [Full Text] [Related]  

  • 29. Microdosimetric approach to NIRS-defined biological dose measurement for carbon-ion treatment beam.
    Kase Y; Kanai T; Sakama M; Tameshige Y; Himukai T; Nose H; Matsufuji N
    J Radiat Res; 2011; 52(1):59-68. PubMed ID: 21160136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neutron microdosimetric response of a gas electron multiplier.
    Dubeau J; Waker AJ
    Radiat Prot Dosimetry; 2008; 128(4):413-20. PubMed ID: 17951607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion-counting nanodosemeter with particle tracking capabilities.
    Bashkirov V; Schulte R; Breskin A; Chechik R; Schemelinin S; Garty G; Wroe A; Sadrozinski H; Grosswendt B
    Radiat Prot Dosimetry; 2006; 122(1-4):415-9. PubMed ID: 17283009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dosimetric considerations on TEPC fluka-simulation and measurements.
    Rollet S; Beck P; Ferrari A; Pelliccioni M; Autischer M
    Radiat Prot Dosimetry; 2004; 110(1-4):833-7. PubMed ID: 15353755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of a cylindrical tissue-equivalent proportional counter for use in neutron monitoring.
    Chau Q; Lahaye T; Ménard S; Donadille L; Bolognese T; Rannou A
    Radiat Prot Dosimetry; 2004; 110(1-4):297-300. PubMed ID: 15353662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An active personal neutron dosemeter based on microdosimetric principles: CIME.
    Ménard S; Cutarella D; Lahaye T; Bolognese-Milsztajn T
    Radiat Prot Dosimetry; 2001; 96(1-3):265-8. PubMed ID: 11586745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison between Monte Carlo-calculated and -measured total efficiencies and energy resolution for large plastic scintillators used in whole-body counting.
    Nilsson J; Isaksson M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):555-9. PubMed ID: 21044997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers.
    Song Y; Conner J; Zhang X; Hayward JP
    Appl Radiat Isot; 2016 Feb; 108():100-107. PubMed ID: 26708515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating the TEPC radiation quality factor response for low energy accelerator based clinical applications.
    Aslam ; Prestwich WV; McNeill FE; Waker AJ
    Radiat Prot Dosimetry; 2003; 103(4):311-22. PubMed ID: 12797554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. When the "detection efficiency" is not the "detection" efficiency.
    Shonka JJ; DeBord DM; Kelley JL; Marcial MR
    Health Phys; 2003 Oct; 85(4):502-3; author reply 503. PubMed ID: 13678293
    [No Abstract]   [Full Text] [Related]  

  • 39. Intercomparison of Monte Carlo radiation transport codes to model TEPC response in low-energy neutron and gamma-ray fields.
    Ali F; Waker AJ; Waller EJ
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):257-60. PubMed ID: 24162375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microdosimetry of monoenergetic neutrons.
    Srdoc D; Marino SA
    Radiat Res; 1996 Oct; 146(4):466-74. PubMed ID: 8927719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.