These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 12194319)
1. A feasibility study of a single event spectrometer based on semiconductor devices. Agosteo S; Castoldi A; Castellani L; Colautti P; D'Angelo G; De Nardo L; Favalli A; Lippi I; Martinelli R; Tornielli G; Zotto P Radiat Prot Dosimetry; 2002; 99(1-4):343-6. PubMed ID: 12194319 [TBL] [Abstract][Full Text] [Related]
2. Performance of a neutron spectrometer based on a PIN diode. Agosteo S; D'Angelo G; Fazzi A; Para AF; Pola A; Ventura L; Zotto P Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):180-4. PubMed ID: 16604623 [TBL] [Abstract][Full Text] [Related]
3. Single event upsets in semiconductor devices induced by highly ionising particles. Sannikov AV Radiat Prot Dosimetry; 2004; 110(1-4):399-403. PubMed ID: 15353681 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of a neutron detector-dosemeter based on single-event upsets in dynamic random-access memories. Phillips GW; August RA; Campbell AB; Nelson ME; Price JL; Guardala NA; Moscovitch M Radiat Prot Dosimetry; 2002; 101(1-4):129-32. PubMed ID: 12382721 [TBL] [Abstract][Full Text] [Related]
5. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies. Hubert G; Regis D; Cheminet A; Gatti M; Lacoste V Radiat Prot Dosimetry; 2014 Oct; 161(1-4):290-4. PubMed ID: 24500239 [TBL] [Abstract][Full Text] [Related]
6. A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination. Agosteo S; D'Angelo G; Fazzi A; Foglio Para A; Pola A; Ventura L; Zotto P Radiat Prot Dosimetry; 2004; 110(1-4):509-16. PubMed ID: 15353700 [TBL] [Abstract][Full Text] [Related]
7. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049 [TBL] [Abstract][Full Text] [Related]
8. Development of the fast neutron standard using a Be({alpha},n) reaction at the National Metrology Institute of Japan. Shimoyama T; Harano H; Matsumoto T; Moriyama K; Hata T; Kudo K; Koyamada T; Uritani A Radiat Prot Dosimetry; 2007; 126(1-4):130-3. PubMed ID: 17513862 [TBL] [Abstract][Full Text] [Related]
9. Development of a fast neutron spectrometer composed of silicon-SSD and position-sensitive proportional counters. Matsumoto T; Harano H; Ito Y; Uritani A; Emi K; Kudo K Radiat Prot Dosimetry; 2004; 110(1-4):223-6. PubMed ID: 15353649 [TBL] [Abstract][Full Text] [Related]
10. Secondary photon fields produced in accelerator-based sources for neutron generation. Agosteo S; Cesana A; Garlati L; Pola A; Terrani M Radiat Prot Dosimetry; 2005; 115(1-4):363-8. PubMed ID: 16381747 [TBL] [Abstract][Full Text] [Related]
11. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors. Taforeau J; Higueret S; Husson D; Kachel M; Lebreton L Radiat Prot Dosimetry; 2014 Oct; 161(1-4):41-5. PubMed ID: 24243312 [TBL] [Abstract][Full Text] [Related]
12. Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy. Wroe AJ Technol Cancer Res Treat; 2016 Feb; 15(1):3-11. PubMed ID: 25616623 [TBL] [Abstract][Full Text] [Related]
13. On neutron dosimetry by semiconductor detectors and hydrogenous radiator assembly. Deme S Health Phys; 1970 Jun; 18(6):705-10. PubMed ID: 5513263 [No Abstract] [Full Text] [Related]
14. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes. Tsuda S; Nakane Y; Yamaguchi Y Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688 [TBL] [Abstract][Full Text] [Related]
15. CHELSI: a portable neutron spectrometer for the 20-800 MeV region. McLean TD; Olsher RH; Romero LL; Miles LH; Devine RT; Fallu-Labruyere A; Grudberg P Radiat Prot Dosimetry; 2007; 126(1-4):223-8. PubMed ID: 17522039 [TBL] [Abstract][Full Text] [Related]
16. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV. Taniguchi S; Moriya T; Takada M; Hatanaka K; Wakasa T; Saito T Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):175-9. PubMed ID: 16604622 [TBL] [Abstract][Full Text] [Related]
17. Workplace characterisation in mixed neutron-gamma fields, specific requirements and available methods at high-energy accelerators. Silari M Radiat Prot Dosimetry; 2007; 124(3):230-44. PubMed ID: 17704502 [TBL] [Abstract][Full Text] [Related]
18. A MULTI-ELEMENT THICK GAS ELECTRON MULTIPLIER-BASED MICRODOSEMETER FOR MEASUREMENT OF NEUTRONS DOSE-EQUIVALENT: A MONTE CARLO STUDY. Moslehi A; Raisali G Radiat Prot Dosimetry; 2017 Nov; 176(4):404-410. PubMed ID: 28338980 [TBL] [Abstract][Full Text] [Related]
19. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV. Fehrenbacher G; Kozlova E; Gutermuth F; Radon T; Schütz R; Nolte R; Böttger R Radiat Prot Dosimetry; 2007; 126(1-4):546-8. PubMed ID: 17561518 [TBL] [Abstract][Full Text] [Related]
20. On accelerator-based neutron sources and neutron field characterization with low energy neutron spectrometer based on position sensitive 3He counter. Murata I; Miyamaru H; Kato I; Mori Y Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S288-91. PubMed ID: 19376716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]