These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12194330)

  • 1. Active neutron dosemeters based on microdosimetric principles: research studies.
    Ménard S; Chau Q; Lahaye T
    Radiat Prot Dosimetry; 2002; 99(1-4):375-6. PubMed ID: 12194330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tissue equivalent proportional counter filled with a mixture of tissue equivalent gas and 3He for neutron monitoring.
    Chau Q; Ménard S
    Radiat Prot Dosimetry; 2006; 122(1-4):390-2. PubMed ID: 17314087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 12B counter: an active dosemeter for high-energy neutrons.
    Leuschner A
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):144-7. PubMed ID: 16604616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An active personal neutron dosemeter based on microdosimetric principles: CIME.
    Ménard S; Cutarella D; Lahaye T; Bolognese-Milsztajn T
    Radiat Prot Dosimetry; 2001; 96(1-3):265-8. PubMed ID: 11586745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a cylindrical tissue-equivalent proportional counter for use in neutron monitoring.
    Chau Q; Lahaye T; Ménard S; Donadille L; Bolognese T; Rannou A
    Radiat Prot Dosimetry; 2004; 110(1-4):297-300. PubMed ID: 15353662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.
    Waker AJ; Aslam
    Radiat Res; 2011 Jun; 175(6):806-13. PubMed ID: 21476858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic personal neutron dosemeters for high energies: measurements, new developments and further needs.
    Luszik-Bhadra M
    Radiat Prot Dosimetry; 2007; 126(1-4):487-90. PubMed ID: 17519244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of neutron dosemeters around standard sources and nuclear fissile objects.
    Raimondi N; Tournier B; Groetz JE; Piot J; Riebler E; Crovisier P; Chambaudet A; Cabanné N
    Radiat Prot Dosimetry; 2002; 101(1-4):197-200. PubMed ID: 12382734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV.
    Fehrenbacher G; Kozlova E; Gutermuth F; Radon T; Schütz R; Nolte R; Böttger R
    Radiat Prot Dosimetry; 2007; 126(1-4):546-8. PubMed ID: 17561518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental results of the operational neutron dosemeter 'Saphydose-N'.
    Lahaye T; Chau Q; Ménard S; Ndontchueng-Moyo M; Bolognese-Milsztajn T; Rannou A
    Radiat Prot Dosimetry; 2004; 110(1-4):201-6. PubMed ID: 15353645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdosimetric Measurements in Gamma and neutron Fields with a Tissue Equivalent Proportional Counter Based on a Gas Electron Multiplier.
    De Nardo L; Dal Corso F; Pegoraro M
    Radiat Prot Dosimetry; 2017 Jun; 175(2):260-266. PubMed ID: 27881795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of active environmental and personal neutron dosemeters.
    Nakamura T; Nunomiya T; Sasaki M
    Radiat Prot Dosimetry; 2004; 110(1-4):169-81. PubMed ID: 15353641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of the mean chord length of a multi-element TEPC irradiated by monoenergetic neutrons.
    Ménard S; Louis C; Lahaye T; Chau Q
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):185-9. PubMed ID: 16604624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric characterization of the irradiation cavity for accelerator-based in vivo neutron activation analysis.
    Byun SH; Pejović-Milić A; McMaster S; Matysiak W; Aslam ; Liu Z; Watters LM; Prestwich WV; McNeill FE; Chettle DR
    Phys Med Biol; 2007 Mar; 52(6):1693-703. PubMed ID: 17455391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the response function for two personal neutron dosemeter designs based on PADC.
    Mayer S; Assenmacher F; Boschung M
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):82-5. PubMed ID: 24179145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.
    Takada M; Nunomiya T; Nakamura T; Matsumoto T; Masuda A
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):213-7. PubMed ID: 27150515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron microdosimetric response of a gas electron multiplier.
    Dubeau J; Waker AJ
    Radiat Prot Dosimetry; 2008; 128(4):413-20. PubMed ID: 17951607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.
    Aslam ; Matysiak W; Atanackovic J; Waker AJ
    Health Phys; 2012 Jun; 102(6):603-13. PubMed ID: 22570919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetry of monoenergetic neutrons.
    Srdoc D; Marino SA
    Radiat Res; 1996 Oct; 146(4):466-74. PubMed ID: 8927719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study and presentation of a fast neutron and photon dosemeter for area and criticality monitoring using radiophotoluminescent glass.
    Girod M; Bourgois L; Cornillaux G; Andre S; Postaük J
    Radiat Prot Dosimetry; 2004; 112(3):359-70. PubMed ID: 15537662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.