These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12194356)

  • 1. Simulation code for the interaction of 14 MeV neutrons on cells.
    Nénot ML; Alard JP; Dionet C; Arnold J; Tchirkov A; Meunier H; Bodez V; Rapp M; Verrelle P
    Radiat Prot Dosimetry; 2002; 99(1-4):47-8. PubMed ID: 12194356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of neutron interactions at the single-cell level.
    Alard JP; Bodez V; Tchirkov A; Nénot ML; Arnold J; Crespin S; Rapp M; Verrelle P; Dionet C
    Radiat Res; 2002 Nov; 158(5):650-6. PubMed ID: 12385643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes.
    Tsuda S; Nakane Y; Yamaguchi Y
    Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kerma coefficients for neutron scattering on 12C and 16O at 96 MeV.
    Mermod P; Blomgren J; Nilsson L; Pomp S; Ohrn A; Osterlund M; Prokofiev A; Tippawan U
    Radiat Prot Dosimetry; 2007; 126(1-4):113-8. PubMed ID: 17575301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of low-dose neutrons applied at reduced dose rate on human melanoma cells.
    Dionet C; Tchirkov A; Alard JP; Arnold J; Dhermain J; Rapp M; Bodez V; Tamain JC; Monbel I; Malet P; Kwiatkowski F; Donnarieix D; Veyre A; Verrelle P
    Radiat Res; 2000 Oct; 154(4):406-11. PubMed ID: 11023604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation.
    Shahmohammadi Beni M; Krstic D; Nikezic D; Yu KN
    J Radiat Res; 2016 Sep; 57(5):492-498. PubMed ID: 27380801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.
    Satoh D; Takahashi F; Endo A; Ohmachi Y; Miyahara N
    J Radiat Res; 2008 Sep; 49(5):503-8. PubMed ID: 18580044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism interplay in determining the biological effectiveness of neutrons as a function of energy.
    Baiocco G; Alloni D; Babini G; Mariotti L; Ottolenghi A
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):316-9. PubMed ID: 25848097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision measurements of the np scattering differential cross section in the intermediate energy region.
    Mermod P; Blomgren J; Nilsson L; Pomp S; Ohrn A; Osterlund M; Prokofiev A; Tippawan U
    Radiat Prot Dosimetry; 2007; 126(1-4):109-12. PubMed ID: 17595211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 1.9 MeV monoenergetic neutrons on Vicia faba chromosomes: microdosimetric considerations.
    Geard CR
    Radiat Environ Biophys; 1980; 18(2):79-89. PubMed ID: 6256802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncogenic transformation of C3H 10T1/2 cells by acute and protracted exposures to monoenergetic neutrons.
    Miller RC; Hall EJ
    Radiat Res; 1991 Oct; 128(1 Suppl):S60-4. PubMed ID: 1924750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of wall thickness on measurement of dose for high energy neutrons.
    Perez-Nunez D; Braby LA
    Health Phys; 2010 Jan; 98(1):37-41. PubMed ID: 19959949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.
    Dionet C; Müller-Barthélémy M; Marceau G; Denis JM; Averbeck D; Gueulette J; Sapin V; Pereira B; Tchirkov A; Chautard E; Verrelle P
    Int J Radiat Biol; 2016 Sep; 92(9):527-35. PubMed ID: 27258624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.
    Olsher RH; McLean TD; Justus AL; Devine RT; Gadd MS
    Radiat Prot Dosimetry; 2010 Mar; 138(3):199-204. PubMed ID: 19887515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron absorbed dose determination by calculations of recoil energy.
    Wrobel F; Benabdesselam M; Iacconi P; Lapraz D
    Radiat Prot Dosimetry; 2004; 110(1-4):807-11. PubMed ID: 15353750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose inhomogeneities for photons and neutrons near interfaces.
    Broerse JJ; Zoetelief J
    Radiat Prot Dosimetry; 2004; 112(4):509-17. PubMed ID: 15623886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron emission and dose distribution from natural carbon irradiated with a 12 MeV amu
    Nandy M; Sarkar PK; Sanami T; Takada M; Shibata T
    J Radiol Prot; 2016 Sep; 36(3):456-473. PubMed ID: 27355162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of proton neutralization effect for neutron dosimetry.
    Endo S
    J Radiat Res; 2004 Sep; 45(3):351-5. PubMed ID: 15613780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.