These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12194417)

  • 1. Microbiological characteristics in a zero-valent iron reactive barrier.
    Gu B; Watson DB; Wu L; Phillips DH; White DC; Zhou J
    Environ Monit Assess; 2002 Aug; 77(3):293-309. PubMed ID: 12194417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.
    Gandhi S; Oh BT; Schnoor JL; Alvarez PJ
    Water Res; 2002 Apr; 36(8):1973-82. PubMed ID: 12092572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Song H; Schwartz FW; Kim B; Jeon BH
    Chemosphere; 2015 Apr; 125():41-9. PubMed ID: 25665757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.
    Su C; Puls RW
    Environ Sci Technol; 2004 May; 38(9):2715-20. PubMed ID: 15180070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Nov; 80(1-2):71-91. PubMed ID: 16126304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Aug; 78(4):291-312. PubMed ID: 16051393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes.
    Fernandez-Sanchez JM; Sawvel EJ; Alvarez PJ
    Chemosphere; 2004 Feb; 54(7):823-9. PubMed ID: 14637339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
    Min JE; Kim M; Pardue JH; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):144-53. PubMed ID: 18172806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron.
    Klausen J; Ranke J; Schwarzenbach RP
    Chemosphere; 2001 Aug; 44(4):511-7. PubMed ID: 11482637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.
    Liu H; Guo M; Zhang Y
    Environ Technol; 2014; 35(5-8):917-24. PubMed ID: 24645474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater.
    Liu SJ; Zhao ZY; Li J; Wang J; Qi Y
    Water Res; 2013 Oct; 47(16):5977-85. PubMed ID: 24064548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.
    Kumar N; Omoregie EO; Rose J; Masion A; Lloyd JR; Diels L; Bastiaens L
    Water Res; 2014 Mar; 51():64-72. PubMed ID: 24388832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron.
    Tratnyek PG; Scherer MM; Deng B; Hu S
    Water Res; 2001 Dec; 35(18):4435-43. PubMed ID: 11763046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions.
    Van Nooten T; Lieben F; Dries J; Pirard E; Springael D; Bastiaens L
    Environ Sci Technol; 2007 Aug; 41(16):5724-30. PubMed ID: 17874779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.
    Huang G; Huang Y; Hu H; Liu F; Zhang Y; Deng R
    Chemosphere; 2015 Jul; 130():8-16. PubMed ID: 25747301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+.
    Huang YH; Zhang TC
    Water Res; 2005 May; 39(9):1751-60. PubMed ID: 15899273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.