These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12194531)

  • 21. The influence of sintering temperature on the proliferation of fibroblastic cells in contact with HA-bioceramics.
    Frayssinet P; Rouquet N; Fages J; Durand M; Vidalain PO; Bonel G
    J Biomed Mater Res; 1997 Jun; 35(3):337-47. PubMed ID: 9138068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis.
    Nishikawa M; Myoui A; Ohgushi H; Ikeuchi M; Tamai N; Yoshikawa H
    Cell Transplant; 2004; 13(4):367-76. PubMed ID: 15468678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.
    Zhou C; Deng C; Chen X; Zhao X; Chen Y; Fan Y; Zhang X
    J Mech Behav Biomed Mater; 2015 Aug; 48():1-11. PubMed ID: 25910818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism and strength of bonding between two bioactive ceramics in vivo.
    Fujita Y; Yamamuro T; Nakamura T; Kitsugi T; Kotani S; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Oct; 26(10):1311-24. PubMed ID: 1331113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation and bioabsorption innovation of the functionally graded bovine bone-originated apatite with blood permeability.
    Akazawa T; Murata M; Sasaki T; Tazaki J; Kobayashi M; Kanno T; Nakamura K; Arisue M
    J Biomed Mater Res A; 2006 Jan; 76(1):44-51. PubMed ID: 16206265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study.
    Cerroni L; Filocamo R; Fabbri M; Piconi C; Caropreso S; Condò SG
    Biomol Eng; 2002 Aug; 19(2-6):119-24. PubMed ID: 12202171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.
    Yao X; Tan S; Jiang D
    J Mater Sci Mater Med; 2005 Feb; 16(2):161-5. PubMed ID: 15744605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid.
    Clupper DC; Mecholsky JJ; LaTorre GP; Greenspan DC
    Biomaterials; 2002 Jun; 23(12):2599-606. PubMed ID: 12033609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
    Shareef MY; Messer PF; van Noort R
    Biomaterials; 1993; 14(1):69-75. PubMed ID: 8381034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bonding behavior between two bioactive ceramics in vivo.
    Kitsugi T; Yamamuro T; Nakamura T; Kokubo T; Takagi M; Shibuya T; Takeuchi H; Ono M
    J Biomed Mater Res; 1987 Sep; 21(9):1109-23. PubMed ID: 3667637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of bioactive and machinable miserite glass-ceramics for dental implant applications.
    Saadaldin SA; Dixon SJ; Costa DO; Rizkalla AS
    Dent Mater; 2013 Jun; 29(6):645-55. PubMed ID: 23587360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro stability of biphasic calcium phosphate ceramics.
    Kohri M; Miki K; Waite DE; Nakajima H; Okabe T
    Biomaterials; 1993; 14(4):299-304. PubMed ID: 8386558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of porous hydroxyapatite granules.
    Liu DM
    Biomaterials; 1996 Oct; 17(20):1955-7. PubMed ID: 8894087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
    Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE
    Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone.
    Joschek S; Nies B; Krotz R; Göferich A
    Biomaterials; 2000 Aug; 21(16):1645-58. PubMed ID: 10905406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel calcium phosphate/PCL graded samples: Design and development in view of biomedical applications.
    Petit C; Tulliani JM; Tadier S; Meille S; Chevalier J; Palmero P
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():336-346. PubMed ID: 30678919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system.
    Netz DJ; Sepulveda P; Pandolfelli VC; Spadaro AC; Alencastre JB; Bentley MV; Marchetti JM
    Int J Pharm; 2001 Feb; 213(1-2):117-25. PubMed ID: 11165099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents.
    Chen Y; Miao X
    Biomaterials; 2005 Apr; 26(11):1205-10. PubMed ID: 15475049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.