These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 12195040)

  • 1. Optimal positioning of markers to control genetic background in marker-assisted backcrossing.
    Servin B; Hospital F
    J Hered; 2002; 93(3):214-7. PubMed ID: 12195040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection theory for marker-assisted backcrossing.
    Frisch M; Melchinger AE
    Genetics; 2005 Jun; 170(2):909-17. PubMed ID: 15802512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The length of the intact donor chromosome segment around a target gene in marker-assisted backcrossing.
    Frisch M; Melchinger AE
    Genetics; 2001 Mar; 157(3):1343-56. PubMed ID: 11238419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using markers to reduce the variation in the genomic composition in marker-assisted backcrossing.
    Servin B
    Genet Res; 2005 Apr; 85(2):151-7. PubMed ID: 16174333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection strategies for marker-assisted backcrossing with high-throughput marker systems.
    Herzog E; Frisch M
    Theor Appl Genet; 2011 Jul; 123(2):251-60. PubMed ID: 21476041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the observed with the simulated distributions of the parental genome contribution in two marker-assisted backcross programs in rice.
    Prigge V; Maurer HP; Mackill DJ; Melchinger AE; Frisch M
    Theor Appl Genet; 2008 Mar; 116(5):739-44. PubMed ID: 18236025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection in backcross programmes.
    Hospital F
    Philos Trans R Soc Lond B Biol Sci; 2005 Jul; 360(1459):1503-11. PubMed ID: 16048792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations.
    Prigge V; Melchinger AE; Dhillon BS; Frisch M
    Theor Appl Genet; 2009 Jun; 119(1):23-32. PubMed ID: 19407987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.).
    Miah G; Rafii MY; Ismail MR; Puteh AB; Rahim HA; Latif MA
    C R Biol; 2015 Feb; 338(2):83-94. PubMed ID: 25553855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backcross assisted by microsatellite markers in common bean.
    Oliveira LK; Melo LC; Brondani C; Peloso MJ; Brondani RP
    Genet Mol Res; 2008 Oct; 7(4):1000-10. PubMed ID: 19048479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a theory of marker-assisted gene pyramiding.
    Servin B; Martin OC; Mézard M; Hospital F
    Genetics; 2004 Sep; 168(1):513-23. PubMed ID: 15454561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speed congenics: accelerated genome recovery using genetic markers.
    Visscher PM
    Genet Res; 1999 Aug; 74(1):81-5. PubMed ID: 10505408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM).
    Babu R; Nair SK; Kumar A; Venkatesh S; Sekhar JC; Singh NN; Srinivasan G; Gupta HS
    Theor Appl Genet; 2005 Sep; 111(5):888-97. PubMed ID: 16034586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximate estimation of minimal sample size required for marker-assisted backcross breeding.
    Zhou YC; Wu WR; Qi JM
    Yi Chuan Xue Bao; 2003 Jul; 30(7):625-30. PubMed ID: 14579530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of donor genome composition and its application in marker aided backcrossing.
    Jinag CJ; Mo HD
    Yi Chuan Xue Bao; 2001; 28(7):655-62. PubMed ID: 11480178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs.
    Hospital F
    Genetics; 2001 Jul; 158(3):1363-79. PubMed ID: 11454782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.
    Lehermeier C; Teyssèdre S; Schön CC
    Genetics; 2017 Dec; 207(4):1651-1661. PubMed ID: 29038144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Developing waxy wheat with backcrossing approach and molecular markers-assisted selection].
    Shu SG; Wang T
    Yi Chuan; 2006 May; 28(5):563-70. PubMed ID: 16735236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations.
    Heckenberger M; Bohn M; Frisch M; Maurer HP; Melchinger AE
    Theor Appl Genet; 2005 Aug; 111(3):598-608. PubMed ID: 15918007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular marker closely linked to the region of Rht-D1c and Ms2 genes in common wheat (Triticum aestivum).
    Cao W; Somers DJ; Fedak G
    Genome; 2009 Jan; 52(1):95-9. PubMed ID: 19132076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.