These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12195502)

  • 1. MR microscopy of articular cartilage at 1.5 T: orientation and site dependence of laminar structures.
    Yoshioka H; Haishi T; Uematsu T; Matsuda Y; Anno I; Echigo J; Lang P; Itai Y; Kose K
    Skeletal Radiol; 2002 Sep; 31(9):505-10. PubMed ID: 12195502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of a new MR microscope using an independent console system (MRMICS) for biological tissues in vitro].
    Yoshioka H; Anno I; Itai Y; Haishi T; Adachi N; Kose K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1999 Feb; 59(3):82-4. PubMed ID: 10339986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR microscopy of the articular cartilage with a 1.0T permanent magnet portable MR system: preliminary results.
    Yoshioka H; Haishi T; Uematsu T; Matsuda Y; Itai Y; Kose K
    Magn Reson Med Sci; 2003 Apr; 2(1):51-5. PubMed ID: 16210820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison study of intraarticular and intravenous gadolinium-enhanced magnetic resonance imaging of cartilage in a canine model.
    Kwack KS; Cho JH; Kim M MS; Yoon CS; Yoon YS; Choi JW; Kwon JW; Min BH; Sun JS; Kim SY
    Acta Radiol; 2008 Feb; 49(1):65-74. PubMed ID: 17963083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy.
    Mlynárik V; Degrassi A; Toffanin R; Vittur F; Cova M; Pozzi-Mucelli RS
    Magn Reson Imaging; 1996; 14(4):435-42. PubMed ID: 8782182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage.
    Rubenstein JD; Kim JK; Morova-Protzner I; Stanchev PL; Henkelman RM
    Radiology; 1993 Jul; 188(1):219-26. PubMed ID: 8511302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI appearance of normal articular cartilage.
    Goodwin DW
    Magn Reson Imaging Clin N Am; 2011 May; 19(2):215-27. PubMed ID: 21665088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy.
    Goodwin DW; Zhu H; Dunn JF
    AJR Am J Roentgenol; 2000 Feb; 174(2):405-9. PubMed ID: 10658715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution magnetic resonance imaging of articular cartilage: correlation with histology and pathology.
    Goodwin DW; Dunn JF
    Top Magn Reson Imaging; 1998 Dec; 9(6):337-47. PubMed ID: 9894737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biochemical content of articular cartilage: an original MRI approach.
    Loeuille D; Olivier P; Watrin A; Grossin L; Gonord P; Guillot G; Etienne S; Blum A; Netter P; Gillet P
    Biorheology; 2002; 39(1-2):269-76. PubMed ID: 12082289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of compression and recovery on bovine articular cartilage: appearance on MR images.
    Rubenstein JD; Kim JK; Henkelman RM
    Radiology; 1996 Dec; 201(3):843-50. PubMed ID: 8939241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of the macroscopic structure of hyaline cartilage with MR imaging.
    Goodwin DW
    Semin Musculoskelet Radiol; 2001 Dec; 5(4):305-12. PubMed ID: 11745047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Pressure devices for NMR microscopy studies of the loading behavior of articular cartilage].
    Gründer W; Kanowski M
    Biomed Tech (Berl); 1998 Oct; 43(10):287-92. PubMed ID: 9846445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of articular cartilage: an overview.
    Recht MP; Resnick D
    Top Magn Reson Imaging; 1998 Dec; 9(6):328-36. PubMed ID: 9894736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes.
    Tang J; Millington S; Acton ST; Crandall J; Hurwitz S
    IEEE Trans Biomed Eng; 2006 May; 53(5):896-907. PubMed ID: 16686412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fat suppression gradient-echo magnetic resonance imaging of experimental articular cartilage lesions: comparison between phase-contrast method at 0.23T and chemical shift selective method at 1.5T.
    Palosaari K; Ojala R; Blanco-Sequeiros R; Tervonen O
    J Magn Reson Imaging; 2003 Aug; 18(2):225-31. PubMed ID: 12884336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of the articular cartilage of the canine ulnar trochlear notch using high-field magnetic resonance imaging.
    Probst A; Modler F; Künzel W; Mlynarik V; Trattnig S
    Vet J; 2008 Jul; 177(1):63-70. PubMed ID: 17513147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of residual dipolar interaction in cartilage by spin-lock technique.
    Akella SV; Regatte RR; Wheaton AJ; Borthakur A; Reddy R
    Magn Reson Med; 2004 Nov; 52(5):1103-9. PubMed ID: 15508163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging applications of magnetic resonance imaging in the evaluation of articular cartilage.
    Peterfy CG; Genant HK
    Radiol Clin North Am; 1996 Mar; 34(2):195-213, ix. PubMed ID: 8633111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.