BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12196094)

  • 1. Specificity of 14-3-3 isoform dimer interactions and phosphorylation.
    Aitken A; Baxter H; Dubois T; Clokie S; Mackie S; Mitchell K; Peden A; Zemlickova E
    Biochem Soc Trans; 2002 Aug; 30(4):351-60. PubMed ID: 12196094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants.
    Aitken A
    Plant Mol Biol; 2002 Dec; 50(6):993-1010. PubMed ID: 12516867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo.
    Chaudhri M; Scarabel M; Aitken A
    Biochem Biophys Res Commun; 2003 Jan; 300(3):679-85. PubMed ID: 12507503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphoserine 40-dependent association.
    Kleppe R; Toska K; Haavik J
    J Neurochem; 2001 May; 77(4):1097-107. PubMed ID: 11359875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro.
    Alvarez D; Callejo M; Shoucri R; Boyer L; Price GB; Zannis-Hadjopoulos M
    Biochemistry; 2003 Jun; 42(23):7205-15. PubMed ID: 12795617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 14-3-3 proteins; bringing new definitions to scaffolding.
    Tzivion G; Shen YH; Zhu J
    Oncogene; 2001 Oct; 20(44):6331-8. PubMed ID: 11607836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational modification of 14-3-3 isoforms and regulation of cellular function.
    Aitken A
    Semin Cell Dev Biol; 2011 Sep; 22(7):673-80. PubMed ID: 21864699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis.
    Yaffe MB
    FEBS Lett; 2002 Feb; 513(1):53-7. PubMed ID: 11911880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and sites of phosphorylation of 14-3-3 protein: role in coordinating signal transduction pathways.
    Dubois T; Howell S; Amess B; Kerai P; Learmonth M; Madrazo J; Chaudhri M; Rittinger K; Scarabel M; Soneji Y; Aitken A
    J Protein Chem; 1997 Jul; 16(5):513-22. PubMed ID: 9246637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of multiple phosphorylation events on the transcription factors FKHR, FKHRL1 and AFX.
    Woods YL; Rena G
    Biochem Soc Trans; 2002 Aug; 30(4):391-7. PubMed ID: 12196101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MADM, a novel adaptor protein that mediates phosphorylation of the 14-3-3 binding site of myeloid leukemia factor 1.
    Lim R; Winteringham LN; Williams JH; McCulloch RK; Ingley E; Tiao JY; Lalonde JP; Tsai S; Tilbrook PA; Sun Y; Wu X; Morris SW; Klinken SP
    J Biol Chem; 2002 Oct; 277(43):40997-1008. PubMed ID: 12176995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR.
    Hritz J; Byeon IJ; Krzysiak T; Martinez A; Sklenar V; Gronenborn AM
    Biophys J; 2014 Nov; 107(9):2185-94. PubMed ID: 25418103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?
    Rosenquist M; Sehnke P; Ferl RJ; Sommarin M; Larsson C
    J Mol Evol; 2000 Nov; 51(5):446-58. PubMed ID: 11080367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface.
    Woodcock JM; Murphy J; Stomski FC; Berndt MC; Lopez AF
    J Biol Chem; 2003 Sep; 278(38):36323-7. PubMed ID: 12865427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does isoform diversity explain functional differences in the 14-3-3 protein family?
    Kjarland E; Keen TJ; Kleppe R
    Curr Pharm Biotechnol; 2006 Jun; 7(3):217-23. PubMed ID: 16789906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding.
    Shen YH; Godlewski J; Bronisz A; Zhu J; Comb MJ; Avruch J; Tzivion G
    Mol Biol Cell; 2003 Nov; 14(11):4721-33. PubMed ID: 14551260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa.
    Masters SC; Pederson KJ; Zhang L; Barbieri JT; Fu H
    Biochemistry; 1999 Apr; 38(16):5216-21. PubMed ID: 10213629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain structure of the NRIF3 family of coregulators suggests potential dual roles in transcriptional regulation.
    Li D; Wang F; Samuels HH
    Mol Cell Biol; 2001 Dec; 21(24):8371-84. PubMed ID: 11713274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neurotoxic phospholipase A2 associates, through a non-phosphorylated binding motif, with 14-3-3 protein gamma and epsilon isoforms.
    Sribar J; Sherman NE; Prijatelj P; Faure G; Gubensek F; Fox JW; Aitken A; Pungercar J; Krizaj I
    Biochem Biophys Res Commun; 2003 Mar; 302(4):691-6. PubMed ID: 12646224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding.
    Obsil T; Ghirlando R; Anderson DE; Hickman AB; Dyda F
    Biochemistry; 2003 Dec; 42(51):15264-72. PubMed ID: 14690436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.