These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12196264)

  • 21. Variation in modern human enamel formation times.
    Reid DJ; Dean MC
    J Hum Evol; 2006 Mar; 50(3):329-46. PubMed ID: 16300817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bond strength to surface enamel for different tooth types.
    Hobson RS; McCabe JF; Hogg SD
    Dent Mater; 2001 Mar; 17(2):184-9. PubMed ID: 11163390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subspecies and body size allometry affect milk production and composition, and calf growth in red deer: comparison of Cervus elaphus hispanicus and Cervus elaphus scoticus.
    Landete-Castillejos T; García A; Gómez JA; Molina A; Gallego L
    Physiol Biochem Zool; 2003; 76(4):594-602. PubMed ID: 13130438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The width of clinically-defined keratinized gingiva in the mixed dentition.
    Bosnjak A; Jorgić-Srdjak K; Maricević T; Plancak D
    ASDC J Dent Child; 2002; 69(3):266-70, 234. PubMed ID: 12613309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cemento-dentino-canal junction, the apical foramen, and the apical constriction: evaluation by optical microscopy.
    Ponce EH; Vilar Fernández JA
    J Endod; 2003 Mar; 29(3):214-9. PubMed ID: 12669885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological and molecular characteristics of six Sarcocystis spp. from red deer (Cervus elaphus) in Spain, including Sarcocystis cervicanis and three new species.
    Gjerde B; Luzón M; Alunda JM; de la Fuente C
    Parasitol Res; 2017 Oct; 116(10):2795-2811. PubMed ID: 28856431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of fluoride distribution in the mandible and teeth of the red deer (Cervus elaphus L.) from industrially polluted areas in Poland.
    Zakrzewska H; Machoy-Mokrzyńska A; Materny M; Gutowska I; Machoy Z
    Arch Oral Biol; 2005 Mar; 50(3):309-16. PubMed ID: 15740709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer.
    Calderón T; DeMiguel D; Arnold W; Stalder G; Köhler M
    J Anat; 2019 Aug; 235(2):205-216. PubMed ID: 31148188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tooth decalcification using different decalcifying agents - A comparative study.
    Khangura AK; Gupta S; Gulati A; Singh S
    J Oral Maxillofac Pathol; 2021; 25(3):463-469. PubMed ID: 35281150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Results of periodontal therapy related to tooth type.
    Ramfjord SP; Knowles JW; Morrison EC; Burgett FG; Nissle RR
    J Periodontol; 1980 May; 51(5):270-3. PubMed ID: 6929913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fibrillar structure of the cemento-dentinal junction in different kinds of human teeth.
    Yamamoto T; Domon T; Takahashi S; Islam MN; Suzuki R
    J Periodontal Res; 2001 Oct; 36(5):317-21. PubMed ID: 11585119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histologic and radiographic assessment of caries-like lesions localized at the crown margin.
    Zoellner A; Diemer B; Weber HP; Stassinakis A; Gaengler P
    J Prosthet Dent; 2002 Jul; 88(1):54-9. PubMed ID: 12239481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and morphological characteristics of dental neonatal line in sika deer (Cervus nippon).
    Iinuma YM; Suzuki M; Matsuura Y; Asano M; Onuma M; Ohtaishi N
    Jpn J Vet Res; 2004 Feb; 51(3-4):161-6. PubMed ID: 15070041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cementum annulation and age determination in Homo sapiens. I. Tooth variability and observer error.
    Charles DK; Condon K; Cheverud JM; Buikstra JE
    Am J Phys Anthropol; 1986 Nov; 71(3):311-20. PubMed ID: 3812652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The complete mitochondrial genome of the domestic red deer (Cervus elaphus) of New Zealand and its phylogenic position within the family Cervidae.
    Wada K; Okumura K; Nishibori M; Kikkawa Y; Yokohama M
    Anim Sci J; 2010 Oct; 81(5):551-7. PubMed ID: 20887306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An improved high yield method to obtain microsatellite genotypes from red deer antlers up to 200 years old.
    Hoffmann GS; Griebeler EM
    Mol Ecol Resour; 2013 May; 13(3):440-6. PubMed ID: 23347507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomoradiographic description of the teeth of pacas bred in captivity (Agouti paca, Linnaeus, 1766).
    Oliveira FS; Canola JC; Oliveira PT; Pécora JD; Capelli A
    Anat Histol Embryol; 2006 Oct; 35(5):316-8. PubMed ID: 16968251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-species tests of 45 microsatellite loci isolated from different species of ungulates in the Iberian red deer (Cervus elaphus hispanicus) to generate a multiplex panel.
    Sanchez-Fernandez B; Soriguer R; Rico C
    Mol Ecol Resour; 2008 Nov; 8(6):1378-81. PubMed ID: 21586051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of decalcification techniques for histologic examination of the rat maxillary and mandibular incisors for toxicity studies.
    Marinopoulos AE; Ayres SC; Biswas S; Huang X; Mantena SR; Peterson RA; Fossey SL
    J Histotechnol; 2022 Mar; 45(1):2-9. PubMed ID: 34556002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A light microscopical and microradiographic study of coronal dentin in red deer with special reference to the occurrence of giant tubules.
    Hals E
    Scand J Dent Res; 1983 Apr; 91(2):99-104. PubMed ID: 6574586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.