These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 12196587)
21. Brain-derived neurotrophic factor and neurotrophin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. Sawai H; Clarke DB; Kittlerova P; Bray GM; Aguayo AJ J Neurosci; 1996 Jun; 16(12):3887-94. PubMed ID: 8656282 [TBL] [Abstract][Full Text] [Related]
22. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. Edwards JA; Cline HT J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287 [TBL] [Abstract][Full Text] [Related]
23. Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of axotomized retinal ganglion cells in adult rats: comparison to and combination with brain-derived neurotrophic factor (BDNF). Yan Q; Wang J; Matheson CR; Urich JL J Neurobiol; 1999 Feb; 38(3):382-90. PubMed ID: 10022580 [TBL] [Abstract][Full Text] [Related]
24. Dynamic responses of Xenopus retinal ganglion cell axon growth cones to netrin-1 as they innervate their in vivo target. Shirkey NJ; Manitt C; Zuniga L; Cohen-Cory S Dev Neurobiol; 2012 Apr; 72(4):628-48. PubMed ID: 21858928 [TBL] [Abstract][Full Text] [Related]
25. BDNF in the development of the visual system of Xenopus. Cohen-Cory S; Fraser SE Neuron; 1994 Apr; 12(4):747-61. PubMed ID: 8068082 [TBL] [Abstract][Full Text] [Related]
26. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Peinado-Ramón P; Salvador M; Villegas-Pérez MP; Vidal-Sanz M Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):489-500. PubMed ID: 8595949 [TBL] [Abstract][Full Text] [Related]
27. BDNF injected into the superior colliculus reduces developmental retinal ganglion cell death. Ma YT; Hsieh T; Forbes ME; Johnson JE; Frost DO J Neurosci; 1998 Mar; 18(6):2097-107. PubMed ID: 9482796 [TBL] [Abstract][Full Text] [Related]
28. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Hu B; Nikolakopoulou AM; Cohen-Cory S Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221 [TBL] [Abstract][Full Text] [Related]
29. Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Du JL; Poo MM Nature; 2004 Jun; 429(6994):878-83. PubMed ID: 15215865 [TBL] [Abstract][Full Text] [Related]
30. Retrograde neurotrophic signaling in rat retinal ganglion cells is transmitted via the ERK5 but not the ERK1/2 pathway. van Oterendorp C; Sgouris S; Schallner N; Biermann J; Lagrèze WA Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):658-65. PubMed ID: 24398098 [TBL] [Abstract][Full Text] [Related]
31. Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell Type That Senses Color Contrast and Ventral Motion. Liu J; Sanes JR J Neurosci; 2017 Dec; 37(50):12247-12262. PubMed ID: 29114073 [TBL] [Abstract][Full Text] [Related]
32. The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development. Cohen-Cory S; Escandón E; Fraser SE Dev Biol; 1996 Oct; 179(1):102-15. PubMed ID: 8873757 [TBL] [Abstract][Full Text] [Related]
33. BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP. Marler KJ; Suetterlin P; Dopplapudi A; Rubikaite A; Adnan J; Maiorano NA; Lowe AS; Thompson ID; Pathania M; Bordey A; Fulga T; Van Vactor DL; Hindges R; Drescher U J Neurosci; 2014 Jan; 34(3):969-79. PubMed ID: 24431455 [TBL] [Abstract][Full Text] [Related]
34. N- and C-terminal domains of beta-catenin, respectively, are required to initiate and shape axon arbors of retinal ganglion cells in vivo. Elul TM; Kimes NE; Kohwi M; Reichardt LF J Neurosci; 2003 Jul; 23(16):6567-75. PubMed ID: 12878698 [TBL] [Abstract][Full Text] [Related]
35. N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo. Jin T; Peng G; Wu E; Mendiratta S; Elul T Brain Res; 2018 Oct; 1697():34-44. PubMed ID: 29856981 [TBL] [Abstract][Full Text] [Related]
36. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets. Yamagata M; Sanes JR Development; 1995 Nov; 121(11):3763-76. PubMed ID: 8582286 [TBL] [Abstract][Full Text] [Related]
37. Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice. Feng L; Puyang Z; Chen H; Liang P; Troy JB; Liu X eNeuro; 2017; 4(1):. PubMed ID: 28101532 [TBL] [Abstract][Full Text] [Related]
38. Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor. O'Neill KM; Kwon M; Donohue KE; Firestein BL Cell Mol Life Sci; 2017 Dec; 74(23):4369-4385. PubMed ID: 28698933 [TBL] [Abstract][Full Text] [Related]
39. Neurotrophic regulation of retinal ganglion cell synaptic connectivity: from axons and dendrites to synapses. Cohen-Cory S; Lom B Int J Dev Biol; 2004; 48(8-9):947-56. PubMed ID: 15558485 [TBL] [Abstract][Full Text] [Related]
40. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. Yates PA; Roskies AL; McLaughlin T; O'Leary DD J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]