BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 12196606)

  • 1. Abnormal cerebellar signaling induces dystonia in mice.
    Pizoli CE; Jinnah HA; Billingsley ML; Hess EJ
    J Neurosci; 2002 Sep; 22(17):7825-33. PubMed ID: 12196606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The basal ganglia and cerebellum interact in the expression of dystonic movement.
    Neychev VK; Fan X; Mitev VI; Hess EJ; Jinnah HA
    Brain; 2008 Sep; 131(Pt 9):2499-509. PubMed ID: 18669484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intrastriatal injections of glutamate receptor antagonists on the severity of paroxysmal dystonia in the dtsz mutant.
    Sander SE; Richter A
    Eur J Pharmacol; 2007 Jun; 563(1-3):102-8. PubMed ID: 17349621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged generalized dystonia after chronic cerebellar application of kainic acid.
    Alvarez-Fischer D; Grundmann M; Lu L; Samans B; Fritsch B; Möller JC; Schaefer MK; Hartmann A; Oertel WH; Bandmann O
    Brain Res; 2012 Jun; 1464():82-8. PubMed ID: 22595488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited regional cerebellar dysfunction induces focal dystonia in mice.
    Raike RS; Pizoli CE; Weisz C; van den Maagdenberg AM; Jinnah HA; Hess EJ
    Neurobiol Dis; 2013 Jan; 49():200-10. PubMed ID: 22850483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective and sustained α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice.
    Fan X; Hughes KE; Jinnah HA; Hess EJ
    J Pharmacol Exp Ther; 2012 Mar; 340(3):733-41. PubMed ID: 22171094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (pcd) mutant background.
    Campbell DB; North JB; Hess EJ
    Exp Neurol; 1999 Nov; 160(1):268-78. PubMed ID: 10630211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal c-fos expression in the lateral habenula during dystonic attacks in a hamster model of idiopathic dystonia.
    Ebert U; Gernert M; Löscher W; Richter A
    Brain Res; 1996 Jul; 728(1):125-9. PubMed ID: 8864307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterozygous Gnal Mice Are a Novel Animal Model with Which to Study Dystonia Pathophysiology.
    Pelosi A; Menardy F; Popa D; Girault JA; Hervé D
    J Neurosci; 2017 Jun; 37(26):6253-6267. PubMed ID: 28546310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pharmacological entopeduncular manipulations on idiopathic dystonia in the dt(sz) mutant hamster.
    Hamann M; Sander SE; Kreil A; Richter A
    J Neural Transm (Vienna); 2010 Jun; 117(6):747-57. PubMed ID: 20454986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased sensitivity to kainic acid in a genetic model of reduced NMDA receptor function.
    Duncan GE; Inada K; Koller BH; Moy SS
    Brain Res; 2010 Jan; 1307():166-76. PubMed ID: 19840778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cerebellum and dystonia.
    Bologna M; Berardelli A
    Handb Clin Neurol; 2018; 155():259-272. PubMed ID: 29891064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia.
    Shakkottai VG; Batla A; Bhatia K; Dauer WT; Dresel C; Niethammer M; Eidelberg D; Raike RS; Smith Y; Jinnah HA; Hess EJ; Meunier S; Hallett M; Fremont R; Khodakhah K; LeDoux MS; Popa T; Gallea C; Lehericy S; Bostan AC; Strick PL
    Cerebellum; 2017 Apr; 16(2):577-594. PubMed ID: 27734238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups.
    Palma-Cerda F; Auger C; Crawford DJ; Hodgson AC; Reynolds SJ; Cowell JK; Swift KA; Cais O; Vyklicky L; Corrie JE; Ogden D
    Neuropharmacology; 2012 Sep; 63(4):624-34. PubMed ID: 22609535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia.
    Liu Y; Xing H; Wilkes BJ; Yokoi F; Chen H; Vaillancourt DE; Li Y
    Brain Res Bull; 2020 Dec; 165():14-22. PubMed ID: 32976982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fos induction following systemic kainic acid: early expression in hippocampus and later widespread expression correlated with seizure.
    Willoughby JO; Mackenzie L; Medvedev A; Hiscock JJ
    Neuroscience; 1997 Mar; 77(2):379-92. PubMed ID: 9472398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of beta-amyloid precursor protein in rat cortex after systemic kainate-induced seizures.
    Shoham S; Ebstein RP
    Exp Neurol; 1997 Oct; 147(2):361-76. PubMed ID: 9344561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia.
    Matsuda T; Morigaki R; Hayasawa H; Koyama H; Oda T; Miyake K; Takagi Y
    Dis Model Mech; 2024 May; 17(5):. PubMed ID: 38616770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced epileptogenic susceptibility in a genetic model of reactive synaptogenesis: the spastic Han-Wistar rat.
    Cepeda C; Crawford CA; Margulies JE; Watson JB; Levine MS; Cohen RW
    Dev Neurosci; 2002; 24(4):262-71. PubMed ID: 12457064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice.
    Hisatsune C; Miyamoto H; Hirono M; Yamaguchi N; Sugawara T; Ogawa N; Ebisui E; Ohshima T; Yamada M; Hensch TK; Hattori M; Mikoshiba K
    Front Neural Circuits; 2013; 7():156. PubMed ID: 24109434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.