These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12197765)

  • 1. Hydrogen bonding in high-resolution protein structures: a new method to assess NMR protein geometry.
    Lipsitz RS; Sharma Y; Brooks BR; Tjandra N
    J Am Chem Soc; 2002 Sep; 124(35):10621-6. PubMed ID: 12197765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study.
    Ramelot TA; Raman S; Kuzin AP; Xiao R; Ma LC; Acton TB; Hunt JF; Montelione GT; Baker D; Kennedy MA
    Proteins; 2009 Apr; 75(1):147-67. PubMed ID: 18816799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation.
    Grishaev A; Bax A
    J Am Chem Soc; 2004 Jun; 126(23):7281-92. PubMed ID: 15186165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry, energetics, and dynamics of hydrogen bonds in proteins: structural information derived from NMR scalar couplings.
    Gsponer J; Hopearuoho H; Cavalli A; Dobson CM; Vendruscolo M
    J Am Chem Soc; 2006 Nov; 128(47):15127-35. PubMed ID: 17117864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints.
    Jensen PR; Axelsen JB; Lerche MH; Poulsen FM
    J Biomol NMR; 2004 Jan; 28(1):31-41. PubMed ID: 14739637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional potential of mean force to improve backbone and sidechain hydrogen bond geometry in Xplor-NIH protein structure determination.
    Schwieters CD; Bermejo GA; Clore GM
    Protein Sci; 2020 Jan; 29(1):100-110. PubMed ID: 31613020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?
    Garbuzynskiy SO; Melnik BS; Lobanov MY; Finkelstein AV; Galzitskaya OV
    Proteins; 2005 Jul; 60(1):139-47. PubMed ID: 15856480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR of hydrogen bonding in cold-shock protein A and an analysis of the influence of crystallographic resolution on comparisons of hydrogen bond lengths.
    Alexandrescu AT; Snyder DR; Abildgaard F
    Protein Sci; 2001 Sep; 10(9):1856-68. PubMed ID: 11514676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deuterium isotope effects on 15N backbone chemical shifts in proteins.
    Abildgaard J; Hansen PE; Manalo MN; LiWang A
    J Biomol NMR; 2009 Jul; 44(3):119-26. PubMed ID: 19455282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dependencies of interresidue scalar coupling (h3)J(NC') and donor (1)H chemical shifts in the hydrogen bonding regions of proteins.
    Barfield M
    J Am Chem Soc; 2002 Apr; 124(15):4158-68. PubMed ID: 11942855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Search for allosteric disulfide bonds in NMR structures.
    Schmidt B; Hogg PJ
    BMC Struct Biol; 2007 Jul; 7():49. PubMed ID: 17640393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein.
    Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE
    J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The difference between protein structures that are obtained by X-ray analysis and magnetic resonance spectroscopy].
    Mel'nik BS; Garbuzinskiĭ SA; Lobanov MIu; Galzitskaia OV
    Mol Biol (Mosk); 2005; 39(1):129-38. PubMed ID: 15773557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backbone amide
    Paramasivam S; Gronenborn AM; Polenova T
    Solid State Nucl Magn Reson; 2018 Aug; 92():1-6. PubMed ID: 29579703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniformity, ideality, and hydrogen bonds in transmembrane alpha-helices.
    Kim S; Cross TA
    Biophys J; 2002 Oct; 83(4):2084-95. PubMed ID: 12324426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct NMR observation and DFT calculations of a hydrogen bond at the active site of a 44 kDa enzyme.
    Eletsky A; Heinz T; Moreira O; Kienhöfer A; Hilvert D; Pervushi K
    J Biomol NMR; 2002 Sep; 24(1):31-9. PubMed ID: 12449416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the structure of oxidised Desulfovibrio africanus ferredoxin I by 1H NMR spectroscopy and comparison of its solution structure with its crystal structure.
    Davy SL; Osborne MJ; Moore GR
    J Mol Biol; 1998 Apr; 277(3):683-706. PubMed ID: 9533888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereochemistry and Validation of Macromolecular Structures.
    Wlodawer A
    Methods Mol Biol; 2017; 1607():595-610. PubMed ID: 28573590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase.
    Langkilde A; Kristensen SM; Lo Leggio L; Mølgaard A; Jensen JH; Houk AR; Navarro Poulsen JC; Kauppinen S; Larsen S
    Acta Crystallogr D Biol Crystallogr; 2008 Aug; D64(Pt 8):851-63. PubMed ID: 18645234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.
    Mao B; Tejero R; Baker D; Montelione GT
    J Am Chem Soc; 2014 Feb; 136(5):1893-906. PubMed ID: 24392845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.