These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12198096)

  • 1. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.
    Cukras CA; Jeliazkova I; Nichols CG
    J Gen Physiol; 2002 Sep; 120(3):437-46. PubMed ID: 12198096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.
    Cukras CA; Jeliazkova I; Nichols CG
    J Gen Physiol; 2002 Jun; 119(6):581-91. PubMed ID: 12034765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxy-terminal determinants of conductance in inward-rectifier K channels.
    Zhang YY; Robertson JL; Gray DA; Palmer LG
    J Gen Physiol; 2004 Dec; 124(6):729-39. PubMed ID: 15572348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.
    Shyng SL; Cukras CA; Harwood J; Nichols CG
    J Gen Physiol; 2000 Nov; 116(5):599-608. PubMed ID: 11055989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfonylurea and K(+)-channel opener sensitivity of K(ATP) channels. Functional coupling of Kir6.2 and SUR1 subunits.
    Koster JC; Sha Q; Nichols CG
    J Gen Physiol; 1999 Aug; 114(2):203-13. PubMed ID: 10435998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of the activity of ATP-sensitive potassium channels by ion pairs formed between adjacent Kir6.2 subunits.
    Lin YW; Jia T; Weinsoft AM; Shyng SL
    J Gen Physiol; 2003 Aug; 122(2):225-37. PubMed ID: 12885877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A.
    Masia R; Enkvetchakul D; Nichols CG
    J Mol Cell Cardiol; 2005 Sep; 39(3):491-501. PubMed ID: 15893323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1.
    Flagg TP; Kurata HT; Masia R; Caputa G; Magnuson MA; Lefer DJ; Coetzee WA; Nichols CG
    Circ Res; 2008 Dec; 103(12):1458-65. PubMed ID: 18974387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit.
    Antcliff JF; Haider S; Proks P; Sansom MS; Ashcroft FM
    EMBO J; 2005 Jan; 24(2):229-39. PubMed ID: 15650751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish.
    Zhang C; Miki T; Shibasaki T; Yokokura M; Saraya A; Seino S
    Physiol Genomics; 2006 Feb; 24(3):290-7. PubMed ID: 16317080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif.
    Bränström R; Leibiger IB; Leibiger B; Klement G; Nilsson J; Arhem P; Aspinwall CA; Corkey BE; Larsson O; Berggren PO
    Diabetologia; 2007 Aug; 50(8):1670-7. PubMed ID: 17522836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels.
    Rainbow RD; James M; Hudman D; Al Johi M; Singh H; Watson PJ; Ashmole I; Davies NW; Lodwick D; Norman RI
    Biochem J; 2004 Apr; 379(Pt 1):173-81. PubMed ID: 14672537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc is both an intracellular and extracellular regulator of KATP channel function.
    Prost AL; Bloc A; Hussy N; Derand R; Vivaudou M
    J Physiol; 2004 Aug; 559(Pt 1):157-67. PubMed ID: 15218066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal transmembrane domain (TMD0) and a cytosolic linker (L0) of sulphonylurea receptor define the unique intrinsic gating of KATP channels.
    Fang K; Csanády L; Chan KW
    J Physiol; 2006 Oct; 576(Pt 2):379-89. PubMed ID: 16887879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kir6.2 mutations associated with neonatal diabetes reduce expression of ATP-sensitive K+ channels: implications in disease mechanism and sulfonylurea therapy.
    Lin CW; Lin YW; Yan FF; Casey J; Kochhar M; Pratt EB; Shyng SL
    Diabetes; 2006 Jun; 55(6):1738-46. PubMed ID: 16731837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels.
    Loussouarn G; Park KH; Bellocq C; Baró I; Charpentier F; Escande D
    EMBO J; 2003 Oct; 22(20):5412-21. PubMed ID: 14532114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoinositides decrease ATP sensitivity of the cardiac ATP-sensitive K(+) channel. A molecular probe for the mechanism of ATP-sensitive inhibition.
    Fan Z; Makielski JC
    J Gen Physiol; 1999 Aug; 114(2):251-69. PubMed ID: 10436001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.