These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 12198971)

  • 1. Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography.
    Baczek T; Kaliszan R
    J Chromatogr A; 2002 Jul; 962(1-2):41-55. PubMed ID: 12198971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive approaches to gradient retention based on analyte structural descriptors from calculation chemistry.
    Baczek T; Kaliszan R
    J Chromatogr A; 2003 Feb; 987(1-2):29-37. PubMed ID: 12613794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model.
    Baczek T; Kaliszan R; Novotná K; Jandera P
    J Chromatogr A; 2005 May; 1075(1-2):109-15. PubMed ID: 15974124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-retention relationships with model analytes as a means of an objective evaluation of chromatographic columns.
    Ahmed Al-Haj M; Kaliszan R; Buszewski B
    J Chromatogr Sci; 2001 Jan; 39(1):29-38. PubMed ID: 11206911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of methods for extracting linear solvent strength gradient parameters from gradient chromatographic data.
    Ford JC; Ko J
    J Chromatogr A; 1996 Mar; 727(1):1-11. PubMed ID: 8900962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of chromatographic behavior of antibiotic drugs and their metabolites based on quantitative structure-retention relationships with the use of HPLC-DAD.
    Walczak-Skierska J; Szultka-Młyńska M; Pauter K; Buszewski B
    J Pharm Biomed Anal; 2020 May; 184():113187. PubMed ID: 32109708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.
    Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC
    J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of separation on cholesterol-silica stationary phase for high-performance liquid chromatography as revealed by analysis of quantitative structure-retention relationships.
    Al-Haj MA; Haber P; Kaliszan R; Buszewski B; Jezierska M; Chilmonzyk Z
    J Pharm Biomed Anal; 1998 Dec; 18(4-5):721-8. PubMed ID: 9919974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization.
    Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA
    J Chromatogr A; 2002 Mar; 949(1-2):307-26. PubMed ID: 11999748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-retention relationships in comparative studies of behavior of stationary phases under high-performance liquid chromatography and capillary electrochromatography conditions.
    Jiskra J; Claessens HA; Cramers CA; Kaliszan R
    J Chromatogr A; 2002 Nov; 977(2):193-206. PubMed ID: 12456109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipophilicity and pKa estimates from gradient high-performance liquid chromatography.
    Kaliszan R; Haber P; Baczek T; Siluk D; Valko K
    J Chromatogr A; 2002 Aug; 965(1-2):117-27. PubMed ID: 12236521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-(chromatographic) retention relationship models for dissociating compounds.
    Kubik Ł; Wiczling P
    J Pharm Biomed Anal; 2016 Aug; 127():176-83. PubMed ID: 26960942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography.
    Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B
    J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships.
    Kaliszan R; Baczek T; Cimochowska A; Juszczyk P; Wiśniewska K; Grzonka Z
    Proteomics; 2005 Feb; 5(2):409-15. PubMed ID: 15627956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic vs. extrathermodynamic modeling of chromatographic retention.
    Kaliszan R; Wiczling P; Markuszewski MJ; Al-Haj MA
    J Chromatogr A; 2011 Aug; 1218(31):5120-30. PubMed ID: 21665211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test analytes for studies of the molecular mechanism of chromatographic separations by quantitative structure-retention relationships.
    Al-Haj MA; Kaliszan R; Nasal A
    Anal Chem; 1999 Aug; 71(15):2976-85. PubMed ID: 21662893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.