These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 12199105)
1. [Intermittent hypoxic training and L-arginine as corrective agents for myocardial energy supply under acute hypoxia]. Kurhaliuk NM; Serebrovs'ka TV; Nosar VI; Kolesnikova EE; Moĭbenko OO Ukr Biokhim Zh (1999); 2002; 74(1):82-7. PubMed ID: 12199105 [TBL] [Abstract][Full Text] [Related]
2. [Exogenous L-arginine modulates mitochondrial and microsomal oxidation in acute and intermittent normobaric hypoxia]. Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE; Aleksiuk LI Fiziol Zh (1994); 2002; 48(5):67-73. PubMed ID: 12449619 [TBL] [Abstract][Full Text] [Related]
3. [Regulation of oxidative phosphorylation by liver mitochondria receptors after adaptation by rats to periodic normal pressure and acute hypoxia]. Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE Ukr Biokhim Zh (1999); 2002; 74(6):114-9. PubMed ID: 12924024 [TBL] [Abstract][Full Text] [Related]
4. [Intermittent hypoxic training with exogenous nitric oxide improves rat liver mitochondrial oxidation and phosphorylation during acute hypoxia]. Serebrovs'ka TV; Kurgaliuk NM; Nosar VI; Kolesnikova IeE Fiziol Zh (1994); 2001; 47(1):85-92. PubMed ID: 11296563 [TBL] [Abstract][Full Text] [Related]
5. Adaptive Effects of Intermittent Hypoxia Training on Oxygen-Dependent Processes as a Potential Therapeutic Strategy Tool. Kurhaluk N; Lukash O; Kamiński P; Tkaczenko H Cell Physiol Biochem; 2024 Jun; 58(3):226-249. PubMed ID: 38857359 [TBL] [Abstract][Full Text] [Related]
6. [Myocardium mitochondria functional state during adaptation to intermittent hypoxia and treatment with L-arginine]. Kurhaliuk NM; Tkachenko HM Ukr Biokhim Zh (1999); 2004; 76(3):79-84. PubMed ID: 19621743 [TBL] [Abstract][Full Text] [Related]
7. [Effect of L-arginine and N(omega)-nitro-L-arginine on oxidative phosphorylation and lipid peroxidation in rats with various tolerance to hypoxia under stressful conditions]. Ikkert OV; Kurhaliuk NM; Hordiĭ SK Ukr Biokhim Zh (1999); 2001; 73(6):89-97. PubMed ID: 12199086 [TBL] [Abstract][Full Text] [Related]
8. [State of mitochondrial respiration and calcium capacity in livers of rats with different resistance to hypoxia after injections of L-arginine]. Kurhaliuk NM Fiziol Zh (1994); 2001; 47(3):64-72. PubMed ID: 11519253 [TBL] [Abstract][Full Text] [Related]
9. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion]. Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757 [TBL] [Abstract][Full Text] [Related]
10. [Effect of intermittent hypoxic hypoxia on energy supply of rat skeletal muscle during adaptation to physical load]. Havenauskas BL; Nosar VI; Kurhaliuk NM; Nazarenko AI; Bratus' LV; Shuvalova IM; Man'kovs'ka IM Ukr Biokhim Zh (1999); 2005; 77(3):120-6. PubMed ID: 16566138 [TBL] [Abstract][Full Text] [Related]
11. Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. Serebrovskaya TV; Nosar VI; Bratus LV; Gavenauskas BL; Mankovska IM High Alt Med Biol; 2013 Sep; 14(3):280-8. PubMed ID: 24028642 [TBL] [Abstract][Full Text] [Related]
12. [Effect of the hypoxia training on the sensitivity of phenylarsineoxide-induced mitochondrial permeability transition pore opening in the rat heart]. Vavilova HL; Serebrovs'ka TV; Rudyk OV; Bielikova MV; Koliesnikova IeE; Kukoba TV; Sahach VF Fiziol Zh (1994); 2005; 51(4):3-12. PubMed ID: 16201144 [TBL] [Abstract][Full Text] [Related]
13. The effect of intermittent hypoxic training on lung and heart tissues of healthy rats. Rozova K; Mankovska I Pneumonol Alergol Pol; 2012; 80(4):296-300. PubMed ID: 22714072 [TBL] [Abstract][Full Text] [Related]
14. [Continuous adaptation of rats to hypobaric hypoxia prevents stressor hyperglycemia and optimizes mitochondrial respiration under acute hypoxia]. Portnichenko VI; Nosar VI; Sydorenko AM; Portnichenko AH; Man'kovs'ka IM Fiziol Zh (1994); 2012; 58(5):56-64. PubMed ID: 23233947 [TBL] [Abstract][Full Text] [Related]
15. Elucidation of the Role of L-Arginine and N Tkaczenko H; Lukash O; Kamiński P; Kurhaluk N Cell Physiol Biochem; 2024 Jul; 58():336-360. PubMed ID: 39092511 [TBL] [Abstract][Full Text] [Related]
16. The effects of intermittent hypoxia training on mitochondrial oxygen consumption in rats exposed to skeletal unloading. Kurhaluk N; Tkachenko H; Nosar V Ann Clin Lab Sci; 2013; 43(1):54-63. PubMed ID: 23462606 [TBL] [Abstract][Full Text] [Related]
17. [Disruption of energy metabolism in the liver during lung inflammation in rats]. Semenov VL; Iarosh AM Vopr Med Khim; 1991; 37(3):28-30. PubMed ID: 1949678 [TBL] [Abstract][Full Text] [Related]
18. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335 [TBL] [Abstract][Full Text] [Related]
19. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids. DeGrado TR; Kitapci MT; Wang S; Ying J; Lopaschuk GD J Nucl Med; 2006 Jan; 47(1):173-81. PubMed ID: 16391202 [TBL] [Abstract][Full Text] [Related]
20. [The effect of hypoxic hypoxia on energy metabolism in the liver mitochondria and the acetylcholine content of different tissues]. Doliba MM; Hordiĭ SK; Korobov VM Fiziol Zh (1994); 1996; 42(5-6):45-50. PubMed ID: 9044811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]