These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 12199468)
1. Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Pignata ML; Gudiño GL; Wannaz ED; Plá RR; González CM; Carreras HA; Orellana L Environ Pollut; 2002; 120(1):59-68. PubMed ID: 12199468 [TBL] [Abstract][Full Text] [Related]
2. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Wannaz ED; Carreras HA; Pérez CA; Pignata ML Sci Total Environ; 2006 May; 361(1-3):267-78. PubMed ID: 16364408 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Bermudez GM; Rodriguez JH; Pignata ML Environ Res; 2009 Jan; 109(1):6-14. PubMed ID: 18951124 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant response of three Tillandsia species transplanted to urban, agricultural, and industrial areas. Bermudez GM; Pignata ML Arch Environ Contam Toxicol; 2011 Oct; 61(3):401-13. PubMed ID: 21279718 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Rodriguez JH; Pignata ML; Fangmeier A; Klumpp A Chemosphere; 2010 Jun; 80(3):208-15. PubMed ID: 20493514 [TBL] [Abstract][Full Text] [Related]
6. Air quality biomonitoring of trace elements in the metropolitan area of Huancayo, Peru using transplanted Tillandsia capillaris as a biomonitor. Cruz ARH; Ayuque RFO; Cruz RWH; López-Gonzales JL; Gioda A An Acad Bras Cienc; 2020; 92(1):e20180813. PubMed ID: 32294692 [TBL] [Abstract][Full Text] [Related]
7. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Micó C; Recatalá L; Peris M; Sánchez J Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506 [TBL] [Abstract][Full Text] [Related]
8. Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina. Carreras HA; Wannaz ED; Pignata ML Environ Pollut; 2009 Jan; 157(1):117-22. PubMed ID: 18771831 [TBL] [Abstract][Full Text] [Related]
9. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Carreras HA; Pignata ML Environ Pollut; 2002; 117(1):77-87. PubMed ID: 11843540 [TBL] [Abstract][Full Text] [Related]
10. Biomonitoring of Potentially Toxic Elements in Two Polluted Areas from Lurigancho-Chosica Using the genus Tillandsia latifolia and T. purpurea as Biomonitor. De La Cruz ARH; Molina HY; Monrroy XRV; Beringui K; Caysahuana AC; Suazo JA; Rafael NC; Gioda A; Payano IGU Bull Environ Contam Toxicol; 2021 Jul; 107(1):69-76. PubMed ID: 33666681 [TBL] [Abstract][Full Text] [Related]
11. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Figueiredo AM; Nogueira CA; Saiki M; Milian FM; Domingos M Environ Pollut; 2007 Jan; 145(1):279-92. PubMed ID: 16777290 [TBL] [Abstract][Full Text] [Related]
12. Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China. Mamat Z; Yimit H; Ji RZ; Eziz M Sci Total Environ; 2014 Sep; 493():1098-111. PubMed ID: 24953685 [TBL] [Abstract][Full Text] [Related]
13. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Alomary AA; Belhadj S Environ Monit Assess; 2007 Dec; 135(1-3):265-80. PubMed ID: 17342430 [TBL] [Abstract][Full Text] [Related]
14. Geogenic and Anthropogenic Moss Responsiveness to Element Distribution Around a Pb-Zn Mine, Toranica, Republic of Macedonia. Angelovska S; Stafilov T; Šajn R; Balabanova B Arch Environ Contam Toxicol; 2016 Apr; 70(3):487-505. PubMed ID: 26888226 [TBL] [Abstract][Full Text] [Related]
15. Concentrations, distribution, sources, and ecological risk assessment of heavy metals in agricultural topsoil of the Three Gorges Dam region, China. Liu M; Yang Y; Yun X; Zhang M; Wang J Environ Monit Assess; 2015 Mar; 187(3):147. PubMed ID: 25716527 [TBL] [Abstract][Full Text] [Related]
16. Spatial Assessment of Anthropogenic Impact on Trace Metal Accumulation in Farmland Soils from a Rapid Industrializing Region, East China. Jiao W; Niu Y; Niu Y; Hu H; Li R Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30235834 [TBL] [Abstract][Full Text] [Related]
17. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648 [TBL] [Abstract][Full Text] [Related]
18. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China. Yang J; Teng Y; Song L; Zuo R PLoS One; 2016; 11(12):e0168528. PubMed ID: 27992518 [TBL] [Abstract][Full Text] [Related]
19. Foliar uptake and transport of atmospheric trace metals bounded on particulate matters in epiphytic Zheng G; Zhang R; Zhou F; Li P Int J Phytoremediation; 2021; 23(4):400-406. PubMed ID: 32930602 [TBL] [Abstract][Full Text] [Related]
20. [Evaluation on environmental quality of heavy metals in soils and vegetables based on geostatistics and GIS]. Xie ZM; Li J; Wang BL; Chen JJ Huan Jing Ke Xue; 2006 Oct; 27(10):2110-6. PubMed ID: 17256620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]