These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12199569)

  • 1. Identification of cellular sections with imaging mass spectrometry following freeze fracture.
    Roddy TP; Cannon DM; Ostrowski SG; Winograd N; Ewing AG
    Anal Chem; 2002 Aug; 74(16):4020-6. PubMed ID: 12199569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry.
    Roddy TP; Cannon DM; Meserole CA; Winograd N; Ewing AG
    Anal Chem; 2002 Aug; 74(16):4011-9. PubMed ID: 12199568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time of flight mass spectrometry imaging of samples fractured in situ with a spring-loaded trap system.
    Lanekoff I; Kurczy ME; Hill R; Fletcher JS; Vickerman JC; Winograd N; Sjövall P; Ewing AG
    Anal Chem; 2010 Aug; 82(15):6652-9. PubMed ID: 20593800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging TOF-SIMS of rat kidney prepared by high-pressure freezing.
    Nygren H; Börner K; Malmberg P; Tallarek E; Hagenhoff B
    Microsc Res Tech; 2005 Dec; 68(6):329-34. PubMed ID: 16358283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton transfer in time-of-flight secondary ion mass spectrometry studies of frozen-hydrated dipalmitoylphosphatidylcholine.
    Roddy TP; Cannon DM; Ostrowski SG; Ewing AG; Winograd N
    Anal Chem; 2003 Aug; 75(16):4087-94. PubMed ID: 14632121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic and molecular imaging at the single-cell level with TOF-SIMS.
    Colliver TL; Brummel CL; Pacholski ML; Swanek FD; Ewing AG; Winograd N
    Anal Chem; 1997 Jul; 69(13):2225-31. PubMed ID: 9212701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of lipids in human adipose tissue by cluster ion TOF-SIMS.
    Malmberg P; Nygren H; Richter K; Chen Y; Dangardt F; Friberg P; Magnusson Y
    Microsc Res Tech; 2007 Sep; 70(9):828-35. PubMed ID: 17576131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS.
    Schaepe K; Kokesch-Himmelreich J; Rohnke M; Wagner AS; Schaaf T; Wenisch S; Janek J
    Biointerphases; 2015 Mar; 10(1):019016. PubMed ID: 25791294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of fracture planes and cell morphology in complementary fractures of cultured cells in the frozen-hydrated state by field-emission secondary electron microscopy: feasibility for ion localization and fluorescence imaging studies.
    Chandra S; Morrison GH
    J Microsc; 1997 Jun; 186(Pt 3):232-45. PubMed ID: 9226938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary ion MS imaging to relatively quantify cholesterol in the membranes of individual cells from differentially treated populations.
    Ostrowski SG; Kurczy ME; Roddy TP; Winograd N; Ewing AG
    Anal Chem; 2007 May; 79(10):3554-60. PubMed ID: 17428032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid imaging of human skeletal muscle using TOF-SIMS with bismuth cluster ion as a primary ion source.
    Magnusson Y; Friberg P; Sjövall P; Dangardt F; Malmberg P; Chen Y
    Clin Physiol Funct Imaging; 2008 May; 28(3):202-9. PubMed ID: 18363737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular imaging using matrix-enhanced and metal-assisted SIMS.
    Altelaar AF; Piersma SR
    Methods Mol Biol; 2010; 656():197-208. PubMed ID: 20680592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static time-of-flight secondary ion mass spectrometry imaging of freeze-fractured, frozen-hydrated biological membranes.
    Pacholski ML; Cannon DM; Ewing AG; Winograd N
    Rapid Commun Mass Spectrom; 1998; 12(18):1232-5. PubMed ID: 9772765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative subcellular imaging of boron compounds in individual mitotic and interphase human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).
    Chandra S; Tjarks W; Lorey DR; Barth RF
    J Microsc; 2008 Jan; 229(Pt 1):92-103. PubMed ID: 18173648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing cell chemistry with time-of-flight secondary ion mass spectrometry: development and exploitation of instrumentation for studies of frozen-hydrated biological material.
    Cliff B; Lockyer N; Jungnickel H; Stephens G; Vickerman JC
    Rapid Commun Mass Spectrom; 2003; 17(19):2163-7. PubMed ID: 14515313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of freeze-fractured epithelial plasma membranes on nanometer scale with ToF-SIMS.
    Draude F; Körsgen M; Pelster A; Schwerdtle T; Müthing J; Arlinghaus HF
    Anal Bioanal Chem; 2015 Mar; 407(8):2203-11. PubMed ID: 25420714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging.
    Lanekoff I; Sjövall P; Ewing AG
    Anal Chem; 2011 Jul; 83(13):5337-43. PubMed ID: 21563801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of cell division (mitosis and cytokinesis) by dynamic secondary ion mass spectrometry ion microscopy: LLC-PK1 epithelial cells as a model for subcellular isotopic imaging.
    Chandra S
    J Microsc; 2001 Nov; 204(Pt 2):150-65. PubMed ID: 11737547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discriminating and imaging different phosphatidylcholine species within phase-separated model membranes by principal component analysis of TOF-secondary ion mass spectrometry images.
    Vaezian B; Anderton CR; Kraft ML
    Anal Chem; 2010 Dec; 82(24):10006-14. PubMed ID: 21082775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative imaging of chemical composition in single cells by secondary ion mass spectrometry: cisplatin affects calcium stores in renal epithelial cells.
    Chandra S
    Methods Mol Biol; 2010; 656():113-30. PubMed ID: 20680587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.