These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12200119)

  • 1. Synergistic perturbation of phosphatidylcholine/sphingomyelin bilayers by diacylglycerol and cholesterol.
    Armstrong DL; Borchardt DB; Zidovetzki R
    Biochem Biophys Res Commun; 2002 Aug; 296(4):806-12. PubMed ID: 12200119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study.
    De Boeck H; Zidovetzki R
    Biochemistry; 1989 Sep; 28(18):7439-46. PubMed ID: 2819079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure.
    Shahedi V; Orädd G; Lindblom G
    Biophys J; 2006 Oct; 91(7):2501-7. PubMed ID: 16829566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
    Heerklotz H; Szadkowska H; Anderson T; Seelig J
    J Mol Biol; 2003 Jun; 329(4):793-9. PubMed ID: 12787678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts.
    Gandhavadi M; Allende D; Vidal A; Simon SA; McIntosh TJ
    Biophys J; 2002 Mar; 82(3):1469-82. PubMed ID: 11867462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers.
    Goldberg EM; Lester DS; Borchardt DB; Zidovetzki R
    Biophys J; 1994 Feb; 66(2 Pt 1):382-93. PubMed ID: 8161692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miscibility phase diagrams of giant vesicles containing sphingomyelin.
    Veatch SL; Keller SL
    Phys Rev Lett; 2005 Apr; 94(14):148101. PubMed ID: 15904115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosized Phase Segregation of Sphingomyelin and Dihydrosphigomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol.
    Yasuda T; Slotte JP; Murata M
    Langmuir; 2018 Nov; 34(44):13426-13437. PubMed ID: 30350701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study.
    De Boeck H; Zidovetzki R
    Biochemistry; 1992 Jan; 31(2):623-30. PubMed ID: 1731917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
    Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM
    Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra.
    Yasuda T; Matsumori N; Tsuchikawa H; Lönnfors M; Nyholm TK; Slotte JP; Murata M
    Langmuir; 2015 Dec; 31(51):13783-92. PubMed ID: 26639840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy.
    Et-Thakafy O; Guyomarc'h F; Lopez C
    Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1523-1532. PubMed ID: 31295476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.