These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 12200306)
1. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Noordman WH; Janssen DB Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306 [TBL] [Abstract][Full Text] [Related]
2. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Noordman WH; Wachter JH; de Boer GJ; Janssen DB J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172 [TBL] [Abstract][Full Text] [Related]
3. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Shreve GS; Inguva S; Gunnam S Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984 [TBL] [Abstract][Full Text] [Related]
4. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Herman DC; Zhang Y; Miller RM Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014 [TBL] [Abstract][Full Text] [Related]
5. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? Liu Y; Zeng G; Zhong H; Wang Z; Liu Z; Cheng M; Liu G; Yang X; Liu S J Hazard Mater; 2017 Jan; 322(Pt B):394-401. PubMed ID: 27773441 [TBL] [Abstract][Full Text] [Related]
6. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Beal R; Betts WB J Appl Microbiol; 2000 Jul; 89(1):158-68. PubMed ID: 10945793 [TBL] [Abstract][Full Text] [Related]
7. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Zhang Y; Miller RM Appl Environ Microbiol; 1994 Jun; 60(6):2101-6. PubMed ID: 8031099 [TBL] [Abstract][Full Text] [Related]
8. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Koch AK; Käppeli O; Fiechter A; Reiser J J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079 [TBL] [Abstract][Full Text] [Related]
9. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821 [TBL] [Abstract][Full Text] [Related]
10. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Nie M; Yin X; Ren C; Wang Y; Xu F; Shen Q Biotechnol Adv; 2010; 28(5):635-43. PubMed ID: 20580808 [TBL] [Abstract][Full Text] [Related]
11. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128 [TBL] [Abstract][Full Text] [Related]
12. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Vasileva-Tonkova E; Sotirova A; Galabova D Curr Microbiol; 2011 Feb; 62(2):427-33. PubMed ID: 20680280 [TBL] [Abstract][Full Text] [Related]
13. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Patel RM; Desai AJ J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868 [TBL] [Abstract][Full Text] [Related]
14. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Zhang Y; Miller RM Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363 [TBL] [Abstract][Full Text] [Related]
15. [Effects of rhamnolipid on the biodegradation of n-hexadecane by microorganism and the cell surface hydrophobicity]. Chen YJ; Wang HQ; Wang R; Yun Y Huan Jing Ke Xue; 2007 Sep; 28(9):2117-22. PubMed ID: 17990568 [TBL] [Abstract][Full Text] [Related]
16. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. Zhong H; Jiang Y; Zeng G; Liu Z; Liu L; Liu Y; Yang X; Lai M; He Y J Hazard Mater; 2015 Mar; 285():383-8. PubMed ID: 25528238 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Koch AK; Fiechter A; Reiser J J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472 [TBL] [Abstract][Full Text] [Related]
18. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508 [TBL] [Abstract][Full Text] [Related]
19. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. Arino S; Marchal R; Vandecasteele JP J Appl Microbiol; 1998 May; 84(5):769-76. PubMed ID: 9674130 [TBL] [Abstract][Full Text] [Related]
20. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. Bouchez-Naïtali M; Rakatozafy H; Marchal R; Leveau JY; Vandecasteele JP J Appl Microbiol; 1999 Mar; 86(3):421-8. PubMed ID: 10196747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]