These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12200310)

  • 1. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina.
    Lee JK; Koo BS; Kim SY
    Appl Environ Microbiol; 2002 Sep; 68(9):4534-8. PubMed ID: 12200310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase.
    Lee JK; Jung HM; Kim SY
    Appl Environ Microbiol; 2003 Jun; 69(6):3427-34. PubMed ID: 12788746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of a NADPH-dependent erythrose reductase from the newly isolated Torula corallina.
    Lee JK; Hong KW; Kim SY
    Biotechnol Prog; 2003; 19(2):495-500. PubMed ID: 12675593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis.
    Janek T; Dobrowolski A; Biegalska A; Mirończuk AM
    Microb Cell Fact; 2017 Jul; 16(1):118. PubMed ID: 28693571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of a novel erythrose reductase from Candida magnoliae.
    Lee JK; Kim SY; Ryu YW; Seo JH; Kim JH
    Appl Environ Microbiol; 2003 Jul; 69(7):3710-8. PubMed ID: 12839736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of erythritol production by Trichosporonoides oedocephalis ATCC 16958 through regulating key enzyme activity and the NADPH/NADP ratio with metal ion supplementation.
    Li L; Kang P; Ju X; Chen J; Zou H; Hu C; Yan L
    Prep Biochem Biotechnol; 2018 Mar; 48(3):257-263. PubMed ID: 29355459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110.
    Lee DH; Lee YJ; Ryu YW; Seo JH
    Microb Cell Fact; 2010 Jun; 9():43. PubMed ID: 20529366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineral supplementation increases erythrose reductase activity in erythritol biosynthesis from glycerol by Yarrowia lipolytica.
    Tomaszewska L; Rymowicz W; Rywińska A
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3069-78. PubMed ID: 24488778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and improvement of erythritol productivity using metabolic engineering.
    Cheng H; Wang S; Bilal M; Ge X; Zhang C; Fickers P; Cheng H
    Microb Cell Fact; 2018 Aug; 17(1):133. PubMed ID: 30157840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.
    Ghezelbash GR; Nahvi I; Emamzadeh R
    Curr Microbiol; 2014 Aug; 69(2):149-57. PubMed ID: 24677039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein rational design and modification of erythrose reductase for the improvement of erythritol production in Yarrowia lipolytica.
    Huang L; Wang W; Wang K; Li Y; Zhou J; Pang A; Zhang B; Liu Z; Zheng Y
    Bioprocess Biosyst Eng; 2024 Oct; 47(10):1659-1668. PubMed ID: 38969832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol.
    van der Woude AD; Perez Gallego R; Vreugdenhil A; Puthan Veetil V; Chroumpi T; Hellingwerf KJ
    Microb Cell Fact; 2016 Apr; 15():60. PubMed ID: 27059824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-depth analysis of erythrose reductase homologs in Yarrowia lipolytica.
    Szczepańczyk M; Rzechonek DA; Neuvéglise C; Mirończuk AM
    Sci Rep; 2023 Jun; 13(1):9129. PubMed ID: 37277427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration.
    Oh DK; Cho CH; Lee JK; Kim SY
    J Ind Microbiol Biotechnol; 2001 Apr; 26(4):248-52. PubMed ID: 11464275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythritol production with minimum by-product using Candida magnoliae mutant.
    Ghezelbash GR; Nahvi I; Malekpour A
    Prikl Biokhim Mikrobiol; 2014; 50(3):324-8. PubMed ID: 25757342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the role of GRE3 in the erythritol biosynthesis pathway in Saccharomyces uvarum and its implication in osmoregulation and redox homeostasis.
    Albillos-Arenal S; Minebois R; Querol A; Barrio E
    Microb Biotechnol; 2023 Sep; 16(9):1858-1871. PubMed ID: 37449952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure analysis and functional expression of erythrose reductases from erythritol-producing fungi (Trichosporonoides megachiliensis SNG-42).
    Ookura T; Azuma K; Isshiki K; Taniguchi H; Kasumi T; Kawamura Y
    Biosci Biotechnol Biochem; 2005 May; 69(5):944-51. PubMed ID: 15914914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.
    Barbier T; Collard F; Zúñiga-Ripa A; Moriyón I; Godard T; Becker J; Wittmann C; Van Schaftingen E; Letesson JJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17815-20. PubMed ID: 25453104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of L-erythrose via L-erythrulose from erythritol using microbial and enzymatic reactions.
    Mizanur RM; Takeshita K; Moshino H; Takada G; Izumori K
    J Biosci Bioeng; 2001; 92(3):237-41. PubMed ID: 16233090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress.
    Kobayashi Y; Yoshida J; Iwata H; Koyama Y; Kato J; Ogihara J; Kasumi T
    J Biosci Bioeng; 2013 Jun; 115(6):645-50. PubMed ID: 23294575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.