These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12200311)

  • 1. The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns.
    Mattison RG; Taki H; Harayama S
    Appl Environ Microbiol; 2002 Sep; 68(9):4539-45. PubMed ID: 12200311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The predatory soil flagellate Heteromita globosa stimulates toluene biodegradation by a Pseudomonas sp.
    Mattison RG; Harayama S
    FEMS Microbiol Lett; 2001 Jan; 194(1):39-45. PubMed ID: 11150663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture.
    Mattison RG; Taki H; Harayama S
    Microb Ecol; 2005 Jan; 49(1):142-50. PubMed ID: 15690226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns.
    Vandevivere P; Baveye P
    Appl Environ Microbiol; 1992 May; 58(5):1690-8. PubMed ID: 1622240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm morphology as related to the porous media clogging.
    Kim JW; Choi H; Pachepsky YA
    Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of biological clogging in unsaturated porous media.
    Soleimani S; Van Geel PJ; Isgor OB; Mostafa MB
    J Contam Hydrol; 2009 Apr; 106(1-2):39-50. PubMed ID: 19201505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining treatment requirements for turbid river water to avoid clogging of aquifer storage and recovery wells in siliceous alluvium.
    Page D; Vanderzalm J; Miotliński K; Barry K; Dillon P; Lawrie K; Brodie RS
    Water Res; 2014 Dec; 66():99-110. PubMed ID: 25195029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode.
    Weitere M; Bergfeld T; Rice SA; Matz C; Kjelleberg S
    Environ Microbiol; 2005 Oct; 7(10):1593-601. PubMed ID: 16156732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between Transport of Bacteria and Their Clogging Efficiency in Sand Columns.
    Vandevivere P; Baveye P
    Appl Environ Microbiol; 1992 Aug; 58(8):2523-30. PubMed ID: 16348753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition.
    Hahn MW; Höfle MG
    Appl Environ Microbiol; 1999 Nov; 65(11):4863-72. PubMed ID: 10543797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas sp. AOB-7 utilizes PHA granules as a sustained-release carbon source and biofilm carrier for aerobic denitrification of aquaculture water.
    Gao XY; Liu Y; Miao LL; Liu ZP
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3183-3192. PubMed ID: 32055912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sand box experiments with bioclogging of porous media: hydraulic conductivity reductions.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2012 Aug; 136-137():1-9. PubMed ID: 22647500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions.
    Koike I; Hattori A
    J Gen Microbiol; 1975 May; 88(1):1-10. PubMed ID: 1151326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems.
    Pavelic P; Dillon PJ; Mucha M; Nakai T; Barry KE; Bestland E
    Water Res; 2011 May; 45(10):3153-63. PubMed ID: 21492896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of individual flagellate - bacteria interactions within semi-natural biofilms.
    Erken M; Farrenschon N; Speckmann S; Arndt H; Weitere M
    Protist; 2012 Jul; 163(4):632-42. PubMed ID: 22186014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition.
    Lawrence JR; Scharf B; Packroff G; Neu TR
    Microb Ecol; 2002 Oct; 44(3):199-207. PubMed ID: 12154388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability.
    Leon-Morales CF; Leis AP; Strathmann M; Flemming HC
    Water Res; 2004 Sep; 38(16):3614-26. PubMed ID: 15325188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater.
    Schipper LA; Barkle GF; Hadfield JC; Vojvodic-Vukovic M; Burgess CP
    J Contam Hydrol; 2004 Apr; 69(3-4):263-79. PubMed ID: 15028394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass plug development and propagation in porous media.
    Stewart TL; Fogler HS
    Biotechnol Bioeng; 2001 Feb; 72(3):353-63. PubMed ID: 11135206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.