These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1220045)

  • 1. The effect of spatial heterogeneity on the persistence of predator-prey interactions.
    Hilborn R
    Theor Popul Biol; 1975 Dec; 8(3):346-55. PubMed ID: 1220045
    [No Abstract]   [Full Text] [Related]  

  • 2. Predator-prey interactions in natural communities.
    Rapport DJ
    J Theor Biol; 1975 May; 51(1):169-80. PubMed ID: 1170465
    [No Abstract]   [Full Text] [Related]  

  • 3. Qualitative behavior of predator-prey communities.
    Lin J; Kahn PB
    J Theor Biol; 1977 Mar; 65(1):101-32. PubMed ID: 557709
    [No Abstract]   [Full Text] [Related]  

  • 4. Spatial heterogeneity and the stability of predator-prey systems: predator-mediated coexistence.
    Hastings A
    Theor Popul Biol; 1978 Dec; 14(3):380-95. PubMed ID: 751268
    [No Abstract]   [Full Text] [Related]  

  • 5. Stability analysis of predator-prey models via the Liapunov method.
    Gatio M; Rinaldi S
    Bull Math Biol; 1977; 39(3):339-47. PubMed ID: 558028
    [No Abstract]   [Full Text] [Related]  

  • 6. Stabilizing effects of spatial heterogeneity in predator-prey systems.
    Murdoch WW
    Theor Popul Biol; 1977 Apr; 11(2):252-73. PubMed ID: 867289
    [No Abstract]   [Full Text] [Related]  

  • 7. A qualitative method for analysis of prey-predator systems under enrichment.
    Assimacopoulos D; Evans FJ
    J Theor Biol; 1979 Oct; 80(4):467-84. PubMed ID: 542005
    [No Abstract]   [Full Text] [Related]  

  • 8. Averaging methods in predator-prey systems and related biological models.
    Lin J; Kahn PB
    J Theor Biol; 1976 Mar; 57(1):73-102. PubMed ID: 957660
    [No Abstract]   [Full Text] [Related]  

  • 9. Ecosystems with three species: one-prey-and-two-predator system in an exactly solvable model.
    Pande LK
    J Theor Biol; 1978 Oct; 74(4):591-8. PubMed ID: 732347
    [No Abstract]   [Full Text] [Related]  

  • 10. On a diffusive prey--predator model which exhibits patchiness.
    Mimura M; Murray JD
    J Theor Biol; 1978 Dec; 75(3):249-62. PubMed ID: 745441
    [No Abstract]   [Full Text] [Related]  

  • 11. The theory of prey-predator oscillations.
    Bulmer MG
    Theor Popul Biol; 1976 Apr; 9(2):137-50. PubMed ID: 1273797
    [No Abstract]   [Full Text] [Related]  

  • 12. [Explicit model for searching behavior of predator].
    Tiutiunov IuV; Sapukhina NIu; Senina IN; Arditi R
    Zh Obshch Biol; 2002; 63(2):137-48. PubMed ID: 11966215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence and global stability in a predator-prey model consisting of three prey genotypes with fertility differences.
    So JW; Freedman HI
    Bull Math Biol; 1986; 48(5-6):469-84. PubMed ID: 3580635
    [No Abstract]   [Full Text] [Related]  

  • 14. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms.
    Zeigler BP
    J Theor Biol; 1977 Aug; 67(4):687-713. PubMed ID: 904340
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effects of spatial structure on predator-prey interactions: A review.].
    Dong HJ; Wu XW; Wang HJ; Xia SS; Pan Y
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):712-720. PubMed ID: 29749181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age structure effects in predator-prey interactions.
    Beddington JR; Free CA
    Theor Popul Biol; 1976 Feb; 9(1):15-24. PubMed ID: 944955
    [No Abstract]   [Full Text] [Related]  

  • 17. Delays in recruitment at different trophic levels: effects on stability.
    Hastings A
    J Math Biol; 1984; 21(1):35-44. PubMed ID: 6520547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching effect in prey--predator system.
    Tansky M
    J Theor Biol; 1978 Feb; 70(3):263-71. PubMed ID: 564991
    [No Abstract]   [Full Text] [Related]  

  • 19. A semi-Markovian model for predator-prey interactions.
    Rao C; Kshirsagar AM
    Biometrics; 1978 Dec; 34(4):611-9. PubMed ID: 749946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple stable equilibria in a predator-prey system.
    Harrison GW
    Bull Math Biol; 1986; 48(2):137-48. PubMed ID: 3719152
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.