BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12200542)

  • 1. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity.
    Schmitt J; Brocca S; Schmid RD; Pleiss J
    Protein Eng; 2002 Jul; 15(7):595-601. PubMed ID: 12200542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters.
    Yen CC; Malmis CC; Lee GC; Lee LC; Shaw JF
    J Agric Food Chem; 2010 Oct; 58(20):10899-905. PubMed ID: 20873770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites.
    Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF
    J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization.
    Xu L; Jiang X; Yang J; Liu Y; Yan Y
    Biotechnol Lett; 2010 Feb; 32(2):269-76. PubMed ID: 19841868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase.
    Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Feb; 54(3):815-22. PubMed ID: 16448188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of lipase chain length specificity in the hydrolysis of esters by random mutagenesis.
    Gaskin DJ; Romojaro A; Turner NA; Jenkins J; Vulfson EN
    Biotechnol Bioeng; 2001 Jun; 73(6):433-41. PubMed ID: 11344447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein engineering and applications of Candida rugosa lipase isoforms.
    Akoh CC; Lee GC; Shaw JF
    Lipids; 2004 Jun; 39(6):513-26. PubMed ID: 15554150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris.
    Lee GC; Lee LC; Sava V; Shaw JF
    Biochem J; 2002 Sep; 366(Pt 2):603-11. PubMed ID: 12020350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex.
    Durmaz E; Kuyucak S; Sezerman UO
    Protein Eng Des Sel; 2013 May; 26(5):325-33. PubMed ID: 23424251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of codon-optimized recombinant candida rugosa lipase 5 (LIP5).
    Lee LC; Yen CC; Malmis CC; Chen LF; Chen JC; Lee GC; Shaw JF
    J Agric Food Chem; 2011 Oct; 59(19):10693-8. PubMed ID: 21854055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holistic engineering of Cal-A lipase chain-length selectivity identifies triglyceride binding hot-spot.
    Quaglia D; Alejaldre L; Ouadhi S; Rousseau O; Pelletier JN
    PLoS One; 2019; 14(1):e0210100. PubMed ID: 30640952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media.
    López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML
    Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa.
    Brocca S; Persson M; Wehtje E; Adlercreutz P; Alberghina L; Lotti M
    Protein Sci; 2000 May; 9(5):985-90. PubMed ID: 10850808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site.
    Yang J; Koga Y; Nakano H; Yamane T
    Protein Eng; 2002 Feb; 15(2):147-52. PubMed ID: 11917151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression, purification, and characterization of a recombinant Cordyceps militaris lipase from Candida rugosa-like family in Pichia pastoris.
    Lee J; Lee H; Lee J; Chang PS
    Enzyme Microb Technol; 2023 Aug; 168():110254. PubMed ID: 37201411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the α-helix-connecting bend.
    Zhang X; Zhang Y; Yang G; Xie Y; Xu L; An J; Cui L; Feng Y
    Enzyme Microb Technol; 2016 Jan; 82():34-41. PubMed ID: 26672446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monobody-Mediated Alteration of Lipase Substrate Specificity.
    Tanaka SI; Takahashi T; Koide A; Iwamoto R; Koikeda S; Koide S
    ACS Chem Biol; 2018 Jun; 13(6):1487-1492. PubMed ID: 29757606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis.
    Joerger RD; Haas MJ
    Lipids; 1994 Jun; 29(6):377-84. PubMed ID: 8090057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, total synthesis, and functional overexpression of the Candida rugosa lip1 gene coding for a major industrial lipase.
    Brocca S; Schmidt-Dannert C; Lotti M; Alberghina L; Schmid RD
    Protein Sci; 1998 Jun; 7(6):1415-22. PubMed ID: 9655346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.