These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12200615)

  • 1. Computational method for muscle-path representation in musculoskeletal models.
    Gao F; Damsgaard M; Rasmussen J; Christensen ST
    Biol Cybern; 2002 Sep; 87(3):199-210. PubMed ID: 12200615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated muscle wrapping using finite element contact detection.
    Favre P; Gerber C; Snedeker JG
    J Biomech; 2010 Jul; 43(10):1931-40. PubMed ID: 20434159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling.
    Audenaert A; Audenaert E
    Comput Methods Programs Biomed; 2008 Oct; 92(1):8-19. PubMed ID: 18606476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From sarcomere to cell: an efficient algorithm for linking mathematical models of muscle contraction.
    Smith NP
    Bull Math Biol; 2003 Nov; 65(6):1141-62. PubMed ID: 14607293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for exact multi-object muscle wrapping and application to the deltoid muscle wrapping around the humerus.
    Marsden SP; Swailes DC; Johnson GR
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1081-95. PubMed ID: 19024156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm.
    Kim HK; Carmena JM; Biggs SJ; Hanson TL; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1520-9. PubMed ID: 17694874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A musculoskeletal model of the equine forelimb for determining surface stresses and strains in the humerus--part I. Mathematical modeling.
    Pollock S; Hull ML; Stover SM; Galuppo LD
    J Biomech Eng; 2008 Aug; 130(4):041006. PubMed ID: 18601448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh.
    Desailly E; Sardain P; Khouri N; Yepremian D; Lacouture P
    J Biomech; 2010 Sep; 43(13):2601-7. PubMed ID: 20627304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic coordinate data for describing muscle-tendon paths: a mathematical approach.
    Carman AB; Milburn PD
    J Biomech; 2005 Apr; 38(4):943-51. PubMed ID: 15713315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical data and development of geometric models for the knee region bones.
    Venturini L; Sordi GM; Fernandes F
    Radiat Prot Dosimetry; 2008; 129(4):486-90. PubMed ID: 17951240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating muscle attachment contours by transforming geometrical bone models.
    Kaptein BL; van der Helm FC
    J Biomech; 2004 Mar; 37(3):263-73. PubMed ID: 14757444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2004 Sep; 37(9):1447-53. PubMed ID: 15275854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanics of the knee joint in deep flexion: a prelude to a total knee replacement that allows for maximum flexion.
    Spanu CE; Hefzy MS
    Technol Health Care; 2003; 11(3):161-81. PubMed ID: 12775934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction.
    Terrier A; Vogel A; Capezzali M; Farron A
    Med Eng Phys; 2008 Jul; 30(6):710-6. PubMed ID: 17826295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A musculoskeletal model of the equine forelimb for determining surface stresses and strains in the humerus-part II. Experimental testing and model validation.
    Pollock S; Stover SM; Hull ML; Galuppo LD
    J Biomech Eng; 2008 Aug; 130(4):041007. PubMed ID: 18601449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical consequences of scaling.
    Biewener AA
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of muscle path based on hermite function].
    Tang G; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):987-90. PubMed ID: 21089654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.