These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12201011)

  • 1. [Development of a flexible cardiorespiratory monitor based on induction plethysmography].
    Trübel H; Huber E; Daake C; Barnikol WK
    Biomed Tech (Berl); 2002; 47(7-8):178-85. PubMed ID: 12201011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of pulmonary flow using impedance pneumography.
    Seppä VP; Viik J; Hyttinen J
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2277-85. PubMed ID: 20542759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust electrode configuration for bioimpedance measurement of respiration.
    Wang HB; Yen CW; Liang JT; Wang Q; Liu GZ; Song R
    J Healthc Eng; 2014; 5(3):313-27. PubMed ID: 25193370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of computer-assisted (Respicomp) respiratory inductive plethysmography in newborns.
    Warren RH; Alderson SH
    Am Rev Respir Dis; 1985 Apr; 131(4):564-7. PubMed ID: 3838868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tidal volume measurements in newborns using respiratory inductive plethysmography.
    Adams JA; Zabaleta IA; Stroh D; Johnson P; Sackner MA
    Am Rev Respir Dis; 1993 Sep; 148(3):585-88. PubMed ID: 8368627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of breath amplitudes: comparison of three noninvasive respiratory monitors to integrated pneumotachograph.
    Adams JA; Zabaleta IA; Stroh D; Sackner MA
    Pediatr Pulmonol; 1993 Oct; 16(4):254-8. PubMed ID: 8265274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathing patterns in infants utilizing respiratory inductive plethysmography.
    Warren RH; Alderson SH
    Chest; 1986 May; 89(5):717-22. PubMed ID: 3698701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new fibre optic sensor for respiratory monitoring.
    Davis C; Mazzolini A; Murphy D
    Australas Phys Eng Sci Med; 1997 Dec; 20(4):214-9. PubMed ID: 9503693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an inductive plethysmograph for ventilation measurement.
    Cohen KP; Panescu D; Booske JH; Webster JG; Tompkins WJ
    Physiol Meas; 1994 May; 15(2):217-29. PubMed ID: 8081197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of tidal volume over time in preterm infants using respiratory inductance plethysmography, The CHIME Study Group. Collaborative Home Infant Monitoring Evaluation.
    Brooks LJ; DiFiore JM; Martin RJ
    Pediatr Pulmonol; 1997 Jun; 23(6):429-33. PubMed ID: 9220525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory cross-sectional area-flux measurements of the human chest wall.
    Sartene R; Martinot-Lagarde P; Mathieu M; Vincent A; Goldman M; Durand G
    J Appl Physiol (1985); 1990 Apr; 68(4):1605-14. PubMed ID: 2347799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of ventilation during exercise by a portable respiratory inductive plethysmograph.
    Clarenbach CF; Senn O; Brack T; Kohler M; Bloch KE
    Chest; 2005 Sep; 128(3):1282-90. PubMed ID: 16162719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tidal volume measurements in infants: Opto-electronic plethysmography versus pneumotachograph.
    Reinaux CM; Aliverti A; da Silva LG; da Silva RJ; Gonçalves JN; Noronha JB; Filho JE; de Andrade AD; de Amorim Britto MC
    Pediatr Pulmonol; 2016 Aug; 51(8):850-7. PubMed ID: 26991671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography.
    Aliverti A; Dellacà R; Pelosi P; Chiumello D; Gatihnoni L; Pedoti A
    Ann Biomed Eng; 2001 Jan; 29(1):60-70. PubMed ID: 11219508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cardiorespiratory signals--methodology and applications in infants.
    Edlinger G; Litscher G; Pfurtscheller G
    Biomed Tech (Berl); 1994 Nov; 39(11):274-8. PubMed ID: 7833446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polygraphic belt with force-sensing expander for physiological tests on cosmonauts.
    Rafolt D; Gallasch E
    Biomed Tech (Berl); 2001 Sep; 46(9):230-5. PubMed ID: 11593979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postural changes in rib cage and abdominal volume-motion coefficients and their effect on the calibration of a respiratory inductance plethysmograph.
    Zimmerman PV; Connellan SJ; Middleton HC; Tabona MV; Goldman MD; Pride N
    Am Rev Respir Dis; 1983 Feb; 127(2):209-14. PubMed ID: 6830037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory inductive plethysmography as a method for measuring ventilatory parameters in conscious, non-restrained dogs.
    Murphy DJ; Renninger JP; Schramek D
    J Pharmacol Toxicol Methods; 2010; 62(1):47-53. PubMed ID: 20435149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot study of respiratory inductance plethysmography as a safe, noninvasive detector of jet ventilation under general anesthesia.
    Atkins JH; Mandel JE; Weinstein GS; Mirza N
    Anesth Analg; 2010 Nov; 111(5):1168-75. PubMed ID: 20736435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A device for 24 hour ambulatory monitoring of abdominal girth using inductive plethysmography.
    Reilly BP; Bolton MP; Lewis MJ; Houghton LA; Whorwell PJ
    Physiol Meas; 2002 Nov; 23(4):661-70. PubMed ID: 12450267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.