BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 12201054)

  • 21. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates.
    Preston DL; Pierce DA; Shimizu Y; Cullings HM; Fujita S; Funamoto S; Kodama K
    Radiat Res; 2004 Oct; 162(4):377-89. PubMed ID: 15447045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the impact of neutron relative biological effectiveness on all solid cancer mortality risks in the Japanese atomic bomb survivors.
    Hafner L; Walsh L; Rühm W
    Int J Radiat Biol; 2024; 100(1):61-71. PubMed ID: 37772764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RELATIVE BIOLOGICAL EFFECTIVENESS OF NEUTRONS DERIVED FROM THE EXCESS RELATIVE RISK MODEL WITH THE ATOMIC BOMB SURVIVORS DATA MANAGED BY HIROSHIMA UNIVERSITY.
    Satoh K; Yasuda H; Kawakami H; Tashiro S
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):346-350. PubMed ID: 29036656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current risk estimates based on the A-bomb survivors data - a discussion in terms of the ICRP recommendations on the neutron weighting factor.
    Rühm W; Walsh L
    Radiat Prot Dosimetry; 2007; 126(1-4):423-31. PubMed ID: 17533156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of a neutron RBE of 70 (+/- 50) for solid-tumor induction at Hiroshima and Nagasaki and its implications for assessing the effective neutron quality factor.
    Zaider M
    Health Phys; 1991 Nov; 61(5):631-6. PubMed ID: 1752746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative biological effectiveness of 144 keV neutrons in producing dicentric chromosomes in human lymphocytes compared with 60Co gamma rays under head-to-head conditions.
    Schmid E; Regulla D; Guldbakke S; Schlegel D; Roos M
    Radiat Res; 2002 Apr; 157(4):453-60. PubMed ID: 11893248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neutron RBE for induction of tumors with high lethality in Sprague-Dawley rats.
    Wolf C; Lafuma J; Masse R; Morin M; Kellerer AM
    Radiat Res; 2000 Oct; 154(4):412-20. PubMed ID: 11023605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancer and non-cancer effects in Japanese atomic bomb survivors.
    Little MP
    J Radiol Prot; 2009 Jun; 29(2A):A43-59. PubMed ID: 19454804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dose response and temporal patterns of radiation-associated solid cancer risks.
    Preston DL; Pierce DA; Shimizu Y; Ron E; Mabuchi K
    Health Phys; 2003 Jul; 85(1):43-6. PubMed ID: 12852470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of changes in dosimetry on cancer mortality risk estimates in the atomic bomb survivors.
    Preston DL; Pierce DA
    Radiat Res; 1988 Jun; 114(3):437-66. PubMed ID: 3375435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimates of neutron relative biological effectiveness derived from the Japanese atomic bomb survivors.
    Little MP
    Int J Radiat Biol; 1997 Dec; 72(6):715-26. PubMed ID: 9416794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the DS86 atomic bomb radiation dosimetry methods using data on severe epilation.
    Stram DO; Mizuno S
    Radiat Res; 1989 Jan; 117(1):93-113. PubMed ID: 2913611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation-related posterior lenticular opacities in Hiroshima and Nagasaki atomic bomb survivors based on the DS86 dosimetry system.
    Otake M; Schull WJ
    Radiat Res; 1990 Jan; 121(1):3-13. PubMed ID: 2300666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discussion of uncertainties and the impact of different neutron RBEs on all solid cancer radiation incidence risks obtained from the Japanese A-bomb survivor data.
    Hafner L; Walsh L; Rühm W
    Ann ICRP; 2023 Mar; 52(1-2):17-22. PubMed ID: 38143299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A framework for estimating radiation-related cancer risks in Japan from the 2011 Fukushima nuclear accident.
    Walsh L; Zhang W; Shore RE; Auvinen A; Laurier D; Wakeford R; Jacob P; Gent N; Anspaugh LR; Schüz J; Kesminiene A; van Deventer E; Tritscher A; del Rosarion Pérez M
    Radiat Res; 2014 Nov; 182(5):556-72. PubMed ID: 25251702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survival and diseases in C57BL mice exposed to X rays or 3.1 MeV neutrons at an age of 7 or 21 days.
    Maisin JR; Gerber GB; Vankerkom J; Wambersie A
    Radiat Res; 1996 Oct; 146(4):453-60. PubMed ID: 8927717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation.
    Tran V; Little MP
    Radiat Environ Biophys; 2017 Nov; 56(4):299-328. PubMed ID: 28939964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal variation of excess mortality rate from solid tumors in mice irradiated at various ages with gamma rays.
    Sasaki S; Fukuda N
    J Radiat Res; 2005 Mar; 46(1):1-19. PubMed ID: 15802854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New operational quantities (RBE ×
    Djeffal S; Dubeau J; Sun J; Ali F
    J Radiol Prot; 2023 Sep; 43(3):. PubMed ID: 37619555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corrections in the atomic bomb data to examine low dose risk.
    Baker GS; Hoel DG
    Health Phys; 2003 Dec; 85(6):709-20. PubMed ID: 14626322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.