BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 12201054)

  • 41. Cancer mortality risk among workers at the Mayak nuclear complex.
    Shilnikova NS; Preston DL; Ron E; Gilbert ES; Vassilenko EK; Romanov SA; Kuznetsova IS; Sokolnikov ME; Okatenko PV; Kreslov VV; Koshurnikova NA
    Radiat Res; 2003 Jun; 159(6):787-98. PubMed ID: 12751962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparisons of lung tumour mortality risk in the Japanese A-bomb survivors and in the Colorado Plateau uranium miners: support for the ICRP lung model.
    Little MP
    Int J Radiat Biol; 2002 Mar; 78(3):145-63. PubMed ID: 11869470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station.
    Peterson LE; Cucinotta FA
    Mutat Res; 1999 Dec; 430(2):327-35. PubMed ID: 10631348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cancer mortality among atomic bomb survivors exposed in utero or as young children, October 1950-May 1992.
    Delongchamp RR; Mabuchi K; Yoshimoto Y; Preston DL
    Radiat Res; 1997 Mar; 147(3):385-95. PubMed ID: 9052687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effectiveness of monoenergetic neutrons at 565 keV in producing dicentric chromosomes in human lymphocytes at low doses.
    Schmid E; Regulla D; Guldbakke S; Schlegel D; Bauchinger M
    Radiat Res; 2000 Sep; 154(3):307-12. PubMed ID: 10956437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The RBE for mouse skin irradiated with 3-MeV neutrons: single and fractionated doses.
    Joiner MC; Maughan RL; Fowler JF; Denekamp J
    Radiat Res; 1983 Jul; 95(1):130-41. PubMed ID: 6878624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cataract in atomic bomb survivors based on a threshold model and the occurrence of severe epilation.
    Otake M; Neriishi K; Schull WJ
    Radiat Res; 1996 Sep; 146(3):339-48. PubMed ID: 8752314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose response in Japanese atomic bomb survivors.
    Little MP; Muirhead CR
    Int J Radiat Biol; 2000 Jul; 76(7):939-53. PubMed ID: 10923618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct biological evidence for a significant neutron dose to survivors of the Hiroshima atomic bomb.
    Brenner DJ
    Radiat Res; 1996 Apr; 145(4):501-7. PubMed ID: 8600511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in biomarkers from space radiation may reflect dose not risk.
    Brooks AL; Lei XC; Rithidech K
    Adv Space Res; 2003; 31(6):1505-12. PubMed ID: 12971405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The risk of non-melanoma skin cancer incidence in the Japanese atomic bomb survivors.
    Little MP; Charles MW
    Int J Radiat Biol; 1997 May; 71(5):589-602. PubMed ID: 9191904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neutrons at Hiroshima: how their disappearance affected risk estimates.
    Ellett WH
    Radiat Res; 1991 Oct; 128(1 Suppl):S147-52. PubMed ID: 1924742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dose-response relationship for life-shortening and carcinogenesis in mice irradiated at day 7 postnatal age with dose range below 1 Gy of gamma rays.
    Sasaki S; Fukuda N
    J Radiat Res; 2006 Jun; 47(2):135-45. PubMed ID: 16819140
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987.
    Thompson DE; Mabuchi K; Ron E; Soda M; Tokunaga M; Ochikubo S; Sugimoto S; Ikeda T; Terasaki M; Izumi S
    Radiat Res; 1994 Feb; 137(2 Suppl):S17-67. PubMed ID: 8127952
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lung Cancer Risk from Plutonium: A Pooled Analysis of the Mayak and Sellafield Worker Cohorts.
    Gillies M; Kuznetsova I; Sokolnikov M; Haylock R; O'Hagan J; Tsareva Y; Labutina E
    Radiat Res; 2017 Dec; 188(6):645-660. PubMed ID: 28985139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lung tumour induction in mice after X-rays and neutrons.
    Coggle JE
    Int J Radiat Biol Relat Stud Phys Chem Med; 1988 Apr; 53(4):585-97. PubMed ID: 3258294
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lack of adaptive response of gamma radiation for protection against neutron-induced teratogenesis.
    Lee HJ; Kim JS; Song MS; Seo HS; Moon C; Kim JC; Jo SK; Kim SH
    Birth Defects Res B Dev Reprod Toxicol; 2008 Oct; 83(5):502-6. PubMed ID: 18850590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental derivation of relative biological effectiveness of A-bomb neutrons in Hiroshima and Nagasaki and implications for risk assessment.
    Sasaki MS; Nomura T; Ejima Y; Utsumi H; Endo S; Saito I; Itoh T; Hoshi M
    Radiat Res; 2008 Jul; 170(1):101-17. PubMed ID: 18582156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the impact of different neutron RBEs on the all solid cancer radiation risks obtained from the Japanese A-bomb survivors data.
    Hafner L; Walsh L; Rühm W
    Int J Radiat Biol; 2023; 99(4):629-643. PubMed ID: 36154910
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low-LET gamma-rays and high-LET fast neutrons.
    Vral A; Thierens H; Baeyens A; De Ridder L
    Int J Radiat Biol; 2002 Apr; 78(4):249-57. PubMed ID: 12020436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.