BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 12201434)

  • 21. Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system.
    Huda W; Sajewicz AM; Ogden KM; Dance DR
    Med Phys; 2003 Mar; 30(3):442-8. PubMed ID: 12674245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-resolution voxel phantom of the breast for dose calculations in mammography.
    Hoeschen C; Fill U; Zankl M; Panzer W; Regulla D; Döhring W
    Radiat Prot Dosimetry; 2005; 114(1-3):406-9. PubMed ID: 15933147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. INDIVIDUALISED CALCULATION OF TISSUE IMPARTED ENERGY IN BREAST TOMOSYNTHESIS.
    Geeraert N; Klausz R; Muller S; Bloch I; Bosmans H
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):267-73. PubMed ID: 27127209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noise equalization for detection of microcalcification clusters in direct digital mammogram images.
    McLoughlin KJ; Bones PJ; Karssemeijer N
    IEEE Trans Med Imaging; 2004 Mar; 23(3):313-20. PubMed ID: 15027524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Objective assessment of image quality in conventional and digital mammography taking into account dynamic range.
    Pachoud M; Lepori D; Valley JF; Verdun FR
    Radiat Prot Dosimetry; 2005; 114(1-3):380-2. PubMed ID: 15933141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray spectrum optimization of full-field digital mammography: simulation and phantom study.
    Bernhardt P; Mertelmeier T; Hoheisel M
    Med Phys; 2006 Nov; 33(11):4337-49. PubMed ID: 17153413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.
    Marques T; Ribeiro A; Di Maria S; Belchior A; Cardoso J; Matela N; Oliveira N; Janeiro L; Almeida P; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):337-41. PubMed ID: 25836692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A volumetric method for estimation of breast density on digitized screen-film mammograms.
    Pawluczyk O; Augustine BJ; Yaffe MJ; Rico D; Yang J; Mawdsley GE; Boyd NF
    Med Phys; 2003 Mar; 30(3):352-64. PubMed ID: 12674236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detectability comparison between a high energy x-ray phase sensitive and mammography systems in imaging phantoms with varying glandular-adipose ratios.
    Ghani MU; Wong MD; Wu D; Zheng B; Fajardo LL; Yan A; Fuh J; Wu X; Liu H
    Phys Med Biol; 2017 May; 62(9):3523-3538. PubMed ID: 28379851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative imaging in breast tomosynthesis and CT: comparison of detection and estimation task performance.
    Richard S; Samei E
    Med Phys; 2010 Jun; 37(6):2627-37. PubMed ID: 20632574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative evaluation of breast density using a dual-energy technique on a digital breast tomosynthesis system.
    Lu KM; Yeh DM; Cao BH; Lin CY; Liang CY; Zhou YB; Tsai CJ
    J Appl Clin Med Phys; 2019 Jun; 20(6):170-177. PubMed ID: 31106990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Average glandular dose in digital mammography and breast tomosynthesis.
    Olgar T; Kahn T; Gosch D
    Rofo; 2012 Oct; 184(10):911-8. PubMed ID: 22711250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective x-ray attenuation coefficient measurements from two full field digital mammography systems for data calibration applications.
    Heine JJ; Thomas JA
    Biomed Eng Online; 2008 Mar; 7():13. PubMed ID: 18373863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system.
    Shen SZ; Bloomquist AK; Mawdsley GE; Yaffe MJ; Elbakri I
    Med Phys; 2006 Apr; 33(4):1108-15. PubMed ID: 16696488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison between objective and subjective image quality measurements for a full field digital mammography system.
    Marshall NW
    Phys Med Biol; 2006 May; 51(10):2441-63. PubMed ID: 16675862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of the properties of digital mammograms using a computer simulation.
    Hunt RA; Dance DR; Bakic PR; Maidment AD; Sandborg M; Ullman G; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):395-8. PubMed ID: 15933144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of clinical full field digital mammography with the task specific system-model-based Fourier Hotelling observer (SMFHO) SNR.
    Liu H; Chakrabarti K; Kaczmarek RV; Benevides L; Gu S; Kyprianou IS
    Med Phys; 2014 May; 41(5):051907. PubMed ID: 24784386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.