These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1107 related articles for article (PubMed ID: 12202041)

  • 1. HIV-1 integration in the human genome favors active genes and local hotspots.
    Schröder AR; Shinn P; Chen H; Berry C; Ecker JR; Bushman F
    Cell; 2002 Aug; 110(4):521-9. PubMed ID: 12202041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription.
    Lewinski MK; Bisgrove D; Shinn P; Chen H; Hoffmann C; Hannenhalli S; Verdin E; Berry CC; Ecker JR; Bushman FD
    J Virol; 2005 Jun; 79(11):6610-9. PubMed ID: 15890899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic sites of human immunodeficiency virus type 2 (HIV-2) integration: similarities to HIV-1 in vitro and possible differences in vivo.
    MacNeil A; Sankalé JL; Meloni ST; Sarr AD; Mboup S; Kanki P
    J Virol; 2006 Aug; 80(15):7316-21. PubMed ID: 16840312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput method for cloning and sequencing human immunodeficiency virus type 1 integration sites.
    Kim S; Kim Y; Liang T; Sinsheimer JS; Chow SA
    J Virol; 2006 Nov; 80(22):11313-21. PubMed ID: 16971446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome.
    Barr SD; Leipzig J; Shinn P; Ecker JR; Bushman FD
    J Virol; 2005 Sep; 79(18):12035-44. PubMed ID: 16140779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of integration and clonal expansion in HIV infection: live long and prosper.
    Anderson EM; Maldarelli F
    Retrovirology; 2018 Oct; 15(1):71. PubMed ID: 30352600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir.
    Ebina H; Kanemura Y; Suzuki Y; Urata K; Misawa N; Koyanagi Y
    Virology; 2012 May; 427(1):44-50. PubMed ID: 22374236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-1 genome nuclear import is mediated by a central DNA flap.
    Zennou V; Petit C; Guetard D; Nerhbass U; Montagnier L; Charneau P
    Cell; 2000 Apr; 101(2):173-85. PubMed ID: 10786833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 gene expression: lessons from provirus and non-integrated DNA.
    Wu Y
    Retrovirology; 2004 Jun; 1():13. PubMed ID: 15219234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications.
    Wang GP; Ciuffi A; Leipzig J; Berry CC; Bushman FD
    Genome Res; 2007 Aug; 17(8):1186-94. PubMed ID: 17545577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential HIV-1 integration sites in macrophages and HIV-associated malignancies.
    Killebrew DA; Troelstrup D; Shiramizu B
    Cell Mol Biol (Noisy-le-grand); 2004; 50 Online Pub():OL581-9. PubMed ID: 15555424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression.
    Mack KD; Jin X; Yu S; Wei R; Kapp L; Green C; Herndier B; Abbey NW; Elbaggari A; Liu Y; McGrath MS
    J Acquir Immune Defic Syndr; 2003 Jul; 33(3):308-20. PubMed ID: 12843741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV integration site distributions in resting and activated CD4+ T cells infected in culture.
    Brady T; Agosto LM; Malani N; Berry CC; O'Doherty U; Bushman F
    AIDS; 2009 Jul; 23(12):1461-71. PubMed ID: 19550285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV infection results in clonal expansions containing integrations within pathogenesis-related biological pathways.
    Haworth KG; Schefter LE; Norgaard ZK; Ironside C; Adair JE; Kiem HP
    JCI Insight; 2018 Jul; 3(13):. PubMed ID: 29997284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear landscape of HIV-1 infection and integration.
    Lusic M; Siliciano RF
    Nat Rev Microbiol; 2017 Feb; 15(2):69-82. PubMed ID: 27941817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging HIV-1 Genomic DNA from Entry through Productive Infection.
    Stultz RD; Cenker JJ; McDonald D
    J Virol; 2017 May; 91(9):. PubMed ID: 28250118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of HIV-1 integrase preferences for target site selection with various oligonucleotides.
    Snásel J; Rosenberg I; Paces O; Pichová I
    Arch Biochem Biophys; 2009 Aug; 488(2):153-62. PubMed ID: 19549503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying integration sites of the HIV-1 genome with intact and aberrant ends through deep sequencing.
    Ode H; Kobayashi A; Matsuda M; Hachiya A; Imahashi M; Yokomaku Y; Iwatani Y
    J Virol Methods; 2019 May; 267():59-65. PubMed ID: 30857886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV.
    Hombrouck A; De Rijck J; Hendrix J; Vandekerckhove L; Voet A; De Maeyer M; Witvrouw M; Engelborghs Y; Christ F; Gijsbers R; Debyser Z
    PLoS Pathog; 2007 Mar; 3(3):e47. PubMed ID: 17397262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update.
    Hamid FB; Kim J; Shin CG
    AIDS Res Ther; 2017 Feb; 14(1):9. PubMed ID: 28209198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.