These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12202140)

  • 1. Assignment strategy for proteins with known structure.
    Hus JC; Prompers JJ; Brüschweiler R
    J Magn Reson; 2002 Jul; 157(1):119-23. PubMed ID: 12202140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone assignment of proteins with known structure using residual dipolar couplings.
    Jung YS; Zweckstetter M
    J Biomol NMR; 2004 Sep; 30(1):25-35. PubMed ID: 15452432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backbone resonance assignment and order tensor estimation using residual dipolar couplings.
    Shealy P; Liu Y; Simin M; Valafar H
    J Biomol NMR; 2011 Aug; 50(4):357-69. PubMed ID: 21667298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.
    Zeng J; Tripathy C; Zhou P; Donald BR
    Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of molecular alignment tensors without backbone resonance assignment: Aid to rapid analysis of protein-protein interactions.
    Zweckstetter M
    J Biomol NMR; 2003 Sep; 27(1):41-56. PubMed ID: 12878840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PACES: Protein sequential assignment by computer-assisted exhaustive search.
    Coggins BE; Zhou P
    J Biomol NMR; 2003 Jun; 26(2):93-111. PubMed ID: 12766406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein sequential resonance assignments by combinatorial enumeration using 13C alpha chemical shifts and their (i, i-1) sequential connectivities.
    Andrec M; Levy RM
    J Biomol NMR; 2002 Aug; 23(4):263-70. PubMed ID: 12398347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algebraic geometry approach to protein structure determination from NMR data.
    Wang L; Mettu RR; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data.
    Wang L; Mettu RR; Donald BR
    J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.
    Trautwein M; Fredriksson K; Möller HM; Exner TE
    J Biomol NMR; 2016 Aug; 65(3-4):217-236. PubMed ID: 27484442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact solutions for chemical bond orientations from residual dipolar couplings.
    Wedemeyer WJ; Rohl CA; Scherag HA
    J Biomol NMR; 2002 Feb; 22(2):137-51. PubMed ID: 11883775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The direct determination of protein structure by NMR without assignment.
    Atkinson RA; Saudek V
    FEBS Lett; 2002 Jan; 510(1-2):1-4. PubMed ID: 11755519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian approach for determining protein side-chain rotamer conformations using unassigned NOE data.
    Zeng J; Roberts KE; Zhou P; Donald BR
    J Comput Biol; 2011 Nov; 18(11):1661-79. PubMed ID: 21970619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOEnet--use of NOE networks for NMR resonance assignment of proteins with known 3D structure.
    Stratmann D; van Heijenoort C; Guittet E
    Bioinformatics; 2009 Feb; 25(4):474-81. PubMed ID: 19074506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust structure-based resonance assignment for functional protein studies by NMR.
    Stratmann D; Guittet E; van Heijenoort C
    J Biomol NMR; 2010 Feb; 46(2):157-73. PubMed ID: 20024602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards fully automated structure-based NMR resonance assignment of ¹⁵N-labeled proteins from automatically picked peaks.
    Jang R; Gao X; Li M
    J Comput Biol; 2011 Mar; 18(3):347-63. PubMed ID: 21385039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR Resonance Assignment Methodology: Characterizing Large Sparsely Labeled Glycoproteins.
    Chalmers GR; Eletsky A; Morris LC; Yang JY; Tian F; Woods RJ; Moremen KW; Prestegard JH
    J Mol Biol; 2019 May; 431(12):2369-2382. PubMed ID: 31034888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments.
    Langmead CJ; Yan A; Lilien R; Wang L; Donald BR
    J Comput Biol; 2004; 11(2-3):277-98. PubMed ID: 15285893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.