These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12202160)

  • 1. Physicochemical principles of tissue material interactions.
    Thull R
    Biomol Eng; 2002 Aug; 19(2-6):43-50. PubMed ID: 12202160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characterization of the properties of differently modified titanium surfaces for dental implantology. 1: Methods for surface analysis].
    Liefeith K; Säuberlich S; Frant M; Klee D; Richter EJ; Höcker H; Spiekermann H
    Biomed Tech (Berl); 1998 Nov; 43(11):330-5. PubMed ID: 9885420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters.
    Nebe JG; Luethen F; Lange R; Beck U
    Macromol Biosci; 2007 May; 7(5):567-78. PubMed ID: 17457937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials.
    Thomas KA; Kay JF; Cook SD; Jarcho M
    J Biomed Mater Res; 1987 Dec; 21(12):1395-414. PubMed ID: 3429474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption/desorption phenomena on pure and Teflon AF-coated titania surfaces studied by dynamic contact angle analysis.
    Rupp F; Axmann D; Ziegler C; Geis-Gerstorfer J
    J Biomed Mater Res; 2002 Dec; 62(4):567-78. PubMed ID: 12221705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface changes of nanotopography by carbon ion implantation to enhance the biocompatibility of silicone rubber: an in vitro study of the optimum ion fluence and adsorbed protein.
    Li X; Zhou X; Chen Y; Yu S; Chen X; Xia X; Shi X; Zhang Y; Fan D
    J Mater Sci Mater Med; 2017 Sep; 28(10):167. PubMed ID: 28916983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Model for immunologic testing of biomaterials].
    Thull R; Trautner K; Karle EJ
    Biomed Tech (Berl); 1992; 37(7-8):162-9. PubMed ID: 1391602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modern biomaterials: a review - bulk properties and implications of surface modifications.
    Roach P; Eglin D; Rohde K; Perry CC
    J Mater Sci Mater Med; 2007 Jul; 18(7):1263-77. PubMed ID: 17443395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-conducting properties of titanium dioxide surfaces on titanium implants.
    Petersson IU; Löberg JE; Fredriksson AS; Ahlberg EK
    Biomaterials; 2009 Sep; 30(27):4471-9. PubMed ID: 19524291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modifications and cell-materials interactions with anodized Ti.
    Das K; Bose S; Bandyopadhyay A
    Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation.
    Zhu L; Ye X; Tang G; Zhao N; Gong Y; Zhao Y; Zhao J; Zhang X
    J Biomed Mater Res A; 2006 Sep; 78(3):515-22. PubMed ID: 16736478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.
    Sul YT; Johansson CB; Jeong Y; Albrektsson T
    Med Eng Phys; 2001 Jun; 23(5):329-46. PubMed ID: 11435147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants.
    Bacakova L; Filova E; Parizek M; Ruml T; Svorcik V
    Biotechnol Adv; 2011; 29(6):739-67. PubMed ID: 21821113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatilibity-related surface characteristics of oxidized NiTi.
    Danilov A; Tuukkanen T; Tuukkanen J; Jämsä T
    J Biomed Mater Res A; 2007 Sep; 82(4):810-9. PubMed ID: 17326140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface treatments and roughness properties of Ti-based biomaterials.
    Bagno A; Di Bello C
    J Mater Sci Mater Med; 2004 Sep; 15(9):935-49. PubMed ID: 15448401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and the efficacy of medical implants.
    Shard AG; Tomlins PE
    Regen Med; 2006 Nov; 1(6):789-800. PubMed ID: 17465760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Plasma immersion ion implantation. A new method for homogeneous surface modification of complex forms of medical implants].
    Mändl S; Rauschenbach B
    Biomed Tech (Berl); 2000; 45(7-8):193-8. PubMed ID: 10975147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Porosity and Electrolyte Composition on the Surface Charge of Hydroxyapatite Biomaterials.
    Espanol M; Mestres G; Luxbacher T; Dory JB; Ginebra MP
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):908-17. PubMed ID: 26684866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.