These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 12202207)
1. Catalytic efficiency and phenotype of HIV-1 proteases encoding single critical resistance substitutions. Cabana M; Fernàndez G; Parera M; Clotet B; Martínez MA Virology; 2002 Aug; 300(1):71-8. PubMed ID: 12202207 [TBL] [Abstract][Full Text] [Related]
2. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. Nijhuis M; van Maarseveen NM; Lastere S; Schipper P; Coakley E; Glass B; Rovenska M; de Jong D; Chappey C; Goedegebuure IW; Heilek-Snyder G; Dulude D; Cammack N; Brakier-Gingras L; Konvalinka J; Parkin N; Kräusslich HG; Brun-Vezinet F; Boucher CA PLoS Med; 2007 Jan; 4(1):e36. PubMed ID: 17227139 [TBL] [Abstract][Full Text] [Related]
3. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Muzammil S; Ross P; Freire E Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275 [TBL] [Abstract][Full Text] [Related]
4. Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy. Giandhari J; Basson AE; Sutherland K; Parry CM; Cane PA; Coovadia A; Kuhn L; Hunt G; Morris L Antimicrob Agents Chemother; 2016 Apr; 60(4):2248-56. PubMed ID: 26833162 [TBL] [Abstract][Full Text] [Related]
5. Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes. Velazquez-Campoy A; Vega S; Freire E Biochemistry; 2002 Jul; 41(27):8613-9. PubMed ID: 12093278 [TBL] [Abstract][Full Text] [Related]
6. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors. Raugi DN; Smith RA; Gottlieb GS; J Virol; 2016 Jan; 90(2):1062-9. PubMed ID: 26559830 [TBL] [Abstract][Full Text] [Related]
7. Atazanavir signature I50L resistance substitution accounts for unique phenotype of increased susceptibility to other protease inhibitors in a variety of human immunodeficiency virus type 1 genetic backbones. Weinheimer S; Discotto L; Friborg J; Yang H; Colonno R Antimicrob Agents Chemother; 2005 Sep; 49(9):3816-24. PubMed ID: 16127058 [TBL] [Abstract][Full Text] [Related]
8. Molecular basis for increased susceptibility of isolates with atazanavir resistance-conferring substitution I50L to other protease inhibitors. Yanchunas J; Langley DR; Tao L; Rose RE; Friborg J; Colonno RJ; Doyle ML Antimicrob Agents Chemother; 2005 Sep; 49(9):3825-32. PubMed ID: 16127059 [TBL] [Abstract][Full Text] [Related]
9. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Fehér A; Weber IT; Bagossi P; Boross P; Mahalingam B; Louis JM; Copeland TD; Torshin IY; Harrison RW; Tözsér J Eur J Biochem; 2002 Aug; 269(16):4114-20. PubMed ID: 12180988 [TBL] [Abstract][Full Text] [Related]
10. Combining mutations in HIV-1 protease to understand mechanisms of resistance. Mahalingam B; Boross P; Wang YF; Louis JM; Fischer CC; Tozser J; Harrison RW; Weber IT Proteins; 2002 Jul; 48(1):107-16. PubMed ID: 12012342 [TBL] [Abstract][Full Text] [Related]
11. The influence of protease inhibitor resistance profiles on selection of HIV therapy in treatment-naive patients. Turner D; Schapiro JM; Brenner BG; Wainberg MA Antivir Ther; 2004 Jun; 9(3):301-14. PubMed ID: 15259893 [TBL] [Abstract][Full Text] [Related]
12. A bacteriophage lambda-based genetic screen for characterization of the activity and phenotype of the human immunodeficiency virus type 1 protease. Martínez MA; Cabana M; Parera M; Gutierrez A; Esté JA; Clotet B Antimicrob Agents Chemother; 2000 May; 44(5):1132-9. PubMed ID: 10770741 [TBL] [Abstract][Full Text] [Related]
13. The HIV-1 protease substitution K55R: a protease-inhibitor-associated substitution involved in restoring viral replication. Margerison ES; Maguire M; Pillay D; Cane P; Elston RC J Antimicrob Chemother; 2008 Apr; 61(4):786-91. PubMed ID: 18252693 [TBL] [Abstract][Full Text] [Related]
14. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406 [TBL] [Abstract][Full Text] [Related]
15. Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N. Clemente JC; Hemrajani R; Blum LE; Goodenow MM; Dunn BM Biochemistry; 2003 Dec; 42(51):15029-35. PubMed ID: 14690411 [TBL] [Abstract][Full Text] [Related]
16. Persistence of mutations during replication of an HIV library containing combinations of selected protease mutations. Song W; Maeda Y; Tenpaku A; Harada S; Yusa K Antiviral Res; 2004 Mar; 61(3):173-80. PubMed ID: 15168798 [TBL] [Abstract][Full Text] [Related]
17. Processivity and drug-dependence of HIV-1 protease: determinants of viral fitness in variants resistant to protease inhibitors. Menzo S; Monachetti A; Balotta C; Corvasce S; Rusconi S; Paolucci S; Baldanti F; Bagnarelli P; Clementi M AIDS; 2003 Mar; 17(5):663-71. PubMed ID: 12646788 [TBL] [Abstract][Full Text] [Related]
18. HIV-1 protease mutation 82M contributes to phenotypic resistance to protease inhibitors in subtype G. Palma AC; Covens K; Snoeck J; Vandamme AM; Camacho RJ; Van Laethem K J Antimicrob Chemother; 2012 May; 67(5):1075-9. PubMed ID: 22331593 [TBL] [Abstract][Full Text] [Related]