BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12202370)

  • 1. Asymmetrical membranes and surface tension.
    Traïkia M; Warschawski DE; Lambert O; Rigaud JL; Devaux PF
    Biophys J; 2002 Sep; 83(3):1443-54. PubMed ID: 12202370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance.
    Traïkia M; Warschawski DE; Recouvreur M; Cartaud J; Devaux PF
    Eur Biophys J; 2000; 29(3):184-95. PubMed ID: 10968210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes.
    Zhelev DV
    Biophys J; 1996 Jul; 71(1):257-73. PubMed ID: 8804609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Packing constraints and electrostatic surface potentials determine transmembrane asymmetry of phosphatidylethanol.
    Victorov AV; Janes N; Taraschi TF; Hoek JB
    Biophys J; 1997 Jun; 72(6):2588-98. PubMed ID: 9168034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of phospholipid asymmetry on fusion between large unilamellar vesicles.
    Eastman SJ; Hope MJ; Wong KF; Cullis PR
    Biochemistry; 1992 May; 31(17):4262-8. PubMed ID: 1567871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of vesicle composition and curvature on the dissociation of phosphatidic acid in small unilamellar vesicles--a 31P-NMR study.
    Swairjo MA; Seaton BA; Roberts MF
    Biochim Biophys Acta; 1994 May; 1191(2):354-61. PubMed ID: 8172921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-transmission electron microscopy of a superstructure of fluid dioleoylphosphatidylcholine (DOPC) membranes.
    Klösgen B; Helfrich W
    Biophys J; 1997 Dec; 73(6):3016-29. PubMed ID: 9414216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material property characteristics for lipid bilayers containing lysolipid.
    Zhelev DV
    Biophys J; 1998 Jul; 75(1):321-30. PubMed ID: 9649389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids.
    Farge E; Devaux PF
    Biophys J; 1992 Feb; 61(2):347-57. PubMed ID: 1547324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy.
    Huebner S; Battersby BJ; Grimm R; Cevc G
    Biophys J; 1999 Jun; 76(6):3158-66. PubMed ID: 10354440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium behavior in supported lipid membranes containing cholesterol.
    Stottrup BL; Veatch SL; Keller SL
    Biophys J; 2004 May; 86(5):2942-50. PubMed ID: 15111410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition.
    Chernomordik L; Chanturiya A; Green J; Zimmerberg J
    Biophys J; 1995 Sep; 69(3):922-9. PubMed ID: 8519992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol.
    Scherfeld D; Kahya N; Schwille P
    Biophys J; 2003 Dec; 85(6):3758-68. PubMed ID: 14645066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane heterogeneities and fusogenicity in phosphatidylcholine-phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch.
    Bhagat M; Sofou S
    Langmuir; 2010 Feb; 26(3):1666-73. PubMed ID: 19813725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid transbilayer movement of phospholipids induced by an asymmetrical perturbation of the bilayer.
    De Kruijff B; Baken P
    Biochim Biophys Acta; 1978 Feb; 507(1):38-47. PubMed ID: 623748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane fusion in vesicles of oligomerizable lipids.
    Ravoo BJ; Weringa WD; Engberts JB
    Biophys J; 1999 Jan; 76(1 Pt 1):374-86. PubMed ID: 9876149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential impact of synthetic antitumor lipid drugs on the membrane organization of phosphatidic acid and diacylglycerol monolayers.
    Mahadeo M; Prenner EJ
    Chem Phys Lipids; 2020 Jul; 229():104896. PubMed ID: 32184083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical properties of lipid bilayer: asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer.
    Maftouni N; Amininasab M; Ejtehadi MR; Kowsari F; Dastvan R
    J Chem Phys; 2013 Feb; 138(6):065101. PubMed ID: 23425492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramembrane electrostatic interactions destabilize lipid vesicles.
    Shoemaker SD; Vanderlick TK
    Biophys J; 2002 Oct; 83(4):2007-14. PubMed ID: 12324419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.