These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12202767)

  • 1. Characterisation of site-biased DNA methyltransferases: specificity, affinity and subsite relationships.
    McNamara AR; Hurd PJ; Smith AE; Ford KG
    Nucleic Acids Res; 2002 Sep; 30(17):3818-30. PubMed ID: 12202767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins.
    Carvin CD; Parr RD; Kladde MP
    Nucleic Acids Res; 2003 Nov; 31(22):6493-501. PubMed ID: 14602907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterodimeric DNA methyltransferases as a platform for creating designer zinc finger methyltransferases for targeted DNA methylation in cells.
    Meister GE; Chandrasegaran S; Ostermeier M
    Nucleic Acids Res; 2010 Mar; 38(5):1749-59. PubMed ID: 20007601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific targeting of cytosine methylation to DNA sequences in vivo.
    Smith AE; Ford KG
    Nucleic Acids Res; 2007; 35(3):740-54. PubMed ID: 17182629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro DNA cytosine methylation of cis-regulatory elements modulates c-Ha-ras promoter activity in vivo.
    Rachal MJ; Yoo H; Becker FF; Lapeyre JN
    Nucleic Acids Res; 1989 Jul; 17(13):5135-47. PubMed ID: 2474794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity.
    Meister GE; Chandrasegaran S; Ostermeier M
    Biochem Biophys Res Commun; 2008 Dec; 377(1):226-30. PubMed ID: 18835252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lowering DNA binding affinity of SssI DNA methyltransferase does not enhance the specificity of targeted DNA methylation in E. coli.
    Ślaska-Kiss K; Zsibrita N; Koncz M; Albert P; Csábrádi Á; Szentes S; Kiss A
    Sci Rep; 2021 Jul; 11(1):15226. PubMed ID: 34315949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted DNA methylation using an artificially bisected M.HhaI fused to zinc fingers.
    Chaikind B; Kilambi KP; Gray JJ; Ostermeier M
    PLoS One; 2012; 7(9):e44852. PubMed ID: 22984575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase.
    Cohen HM; Tawfik DS; Griffiths AD
    Nucleic Acids Res; 2002 Sep; 30(17):3880-5. PubMed ID: 12202773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered zinc finger proteins that respond to DNA modification by HaeIII and HhaI methyltransferase enzymes.
    Isalan M; Choo Y
    J Mol Biol; 2000 Jan; 295(3):471-7. PubMed ID: 10623539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementation between inactive fragments of SssI DNA methyltransferase.
    Slaska-Kiss K; Tímár E; Kiss A
    BMC Mol Biol; 2012 May; 13():17. PubMed ID: 22646482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of an Alu repetitive DNA binding protein and effect of CpG methylation on binding to its recognition sequence.
    Cox GS; Gutkin DW; Haas MJ; Cosgrove DE
    Biochim Biophys Acta; 1998 Mar; 1396(1):67-87. PubMed ID: 9524225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair.
    Yang AS; Shen JC; Zingg JM; Mi S; Jones PA
    Nucleic Acids Res; 1995 Apr; 23(8):1380-7. PubMed ID: 7753629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of improved zinc finger methyltransferases.
    Chaikind B; Ostermeier M
    PLoS One; 2014; 9(5):e96931. PubMed ID: 24810747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 7-Deazaadenosylaziridine Cofactor for Sequence-Specific Labeling of DNA by the DNA Cytosine-C5 Methyltransferase M.HhaI.
    Kunkel F; Lurz R; Weinhold E
    Molecules; 2015 Nov; 20(11):20805-22. PubMed ID: 26610450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free fluorescence detection of DNA methylation and methyltransferase activity based on restriction endonuclease HpaII and exonuclease III.
    Gao C; Li H; Liu Y; Wei W; Zhang Y; Liu S
    Analyst; 2014 Dec; 139(24):6387-92. PubMed ID: 25343162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation of modification-restriction enzymes HpaI and HpaII].
    Bogdarina IG; Zinkevich VE; Bur'ianov IaI; Baev AA
    Biokhimiia; 1985 Oct; 50(10):1659-64. PubMed ID: 2416355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of base analog substitutions in the sequence, CCGG, on the cleavage and methylation reactions of HpaII and MspI endonucleases and their cognate methylases.
    Kim DS; Kang YK; Yoo OJ
    Biochem Mol Biol Int; 1994 Mar; 32(3):507-14. PubMed ID: 7518278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding.
    Wyszynski MW; Gabbara S; Kubareva EA; Romanova EA; Oretskaya TS; Gromova ES; Shabarova ZA; Bhagwat AS
    Nucleic Acids Res; 1993 Jan; 21(2):295-301. PubMed ID: 8441637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, function, and mechanism of HhaI DNA methyltransferases.
    Sankpal UT; Rao DN
    Crit Rev Biochem Mol Biol; 2002; 37(3):167-97. PubMed ID: 12139442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.