These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 12203012)
1. From monomers to micelles: investigation of the parameters influencing proton relaxivity. Nicolle GM; Tóth E; Eisenwiener KP; Mäcke HR; Merbach AE J Biol Inorg Chem; 2002 Sep; 7(7-8):757-69. PubMed ID: 12203012 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular assembly of an amphiphilic Gd(III) chelate: tuning the reorientational correlation time and the water exchange rate. Torres S; Martins JA; André JP; Geraldes CF; Merbach AE; Tóth E Chemistry; 2006 Jan; 12(3):940-8. PubMed ID: 16224764 [TBL] [Abstract][Full Text] [Related]
4. Unexpected aggregation of neutral, xylene-cored dinuclear GdIII chelates in aqueous solution. Costa J; Balogh E; Turcry V; Tripier R; Le Baccon M; Chuburu F; Handel H; Helm L; Tóth E; Merbach AE Chemistry; 2006 Sep; 12(26):6841-51. PubMed ID: 16770815 [TBL] [Abstract][Full Text] [Related]
5. The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent. Nicolle GM; Tóth E; Schmitt-Willich H; Radüchel B; Merbach AE Chemistry; 2002 Mar; 8(5):1040-8. PubMed ID: 11891890 [TBL] [Abstract][Full Text] [Related]
6. A starburst-shaped heterometallic compound incorporating six densely packed gd(3+) ions. Livramento JB; Sour A; Borel A; Merbach AE; Tóth E Chemistry; 2006 Jan; 12(4):989-1003. PubMed ID: 16311990 [TBL] [Abstract][Full Text] [Related]
7. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. Henig J; Tóth E; Engelmann J; Gottschalk S; Mayer HA Inorg Chem; 2010 Jul; 49(13):6124-38. PubMed ID: 20527901 [TBL] [Abstract][Full Text] [Related]
8. A benzene-core trinuclear GdIII complex: towards the optimization of relaxivity for MRI contrast agent applications at high magnetic field. Livramento JB; Helm L; Sour A; O'Neil C; Merbach AE; Tóth E Dalton Trans; 2008 Mar; (9):1195-202. PubMed ID: 18283380 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical characterization of the dimeric lanthanide complexes [en{Ln(DO3A)(H2O)}2] and [pi{Ln(DTTA)(H2O)}2]2-: a variable-temperature 17O NMR study. Lee TM; Cheng TH; Ou MH; Chang CA; Liu GC; Wang YM Magn Reson Chem; 2004 Mar; 42(3):329-36. PubMed ID: 14971018 [TBL] [Abstract][Full Text] [Related]
11. Calix[4]arenes as molecular platforms for magnetic resonance imaging (MRI) contrast agents. Schühle DT; Schatz J; Laurent S; Vander Elst L; Muller RN; Stuart MC; Peters JA Chemistry; 2009; 15(13):3290-6. PubMed ID: 19206118 [TBL] [Abstract][Full Text] [Related]
12. Gadolinium(III) complexes of mono- and diethyl esters of monophosphonic acid analogue of DOTA as potential MRI contrast agents: solution structures and relaxometric studies. Lebdusková P; Hermann P; Helm L; Tóth E; Kotek J; Binnemans K; Rudovský J; Lukes I; Merbach AE Dalton Trans; 2007 Jan; (4):493-501. PubMed ID: 17213936 [TBL] [Abstract][Full Text] [Related]
13. GdIII complexes with fast water exchange and high thermodynamic stability: potential building blocks for high-relaxivity MRI contrast agents. Laus S; Ruloff R; Tóth E; Merbach AE Chemistry; 2003 Aug; 9(15):3555-66. PubMed ID: 12898682 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and physicochemical characterization of a novel precursor for covalently bound macromolecular MRI contrast agents. André JP; Maecke HR; Tóth E; Merbach AA J Biol Inorg Chem; 1999 Jun; 4(3):341-7. PubMed ID: 10439079 [TBL] [Abstract][Full Text] [Related]
15. Gd(3+) complexes conjugated to Pittsburgh compound B: potential MRI markers of β-amyloid plaques. Martins AF; Morfin JF; Geraldes CF; Tóth E J Biol Inorg Chem; 2014 Feb; 19(2):281-95. PubMed ID: 24297602 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic stability and relaxation studies of small, triaza-macrocyclic Mn(II) chelates. de Sá A; Bonnet CS; Geraldes CF; Tóth É; Ferreira PM; André JP Dalton Trans; 2013 Apr; 42(13):4522-32. PubMed ID: 23348796 [TBL] [Abstract][Full Text] [Related]
17. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex. Lebdusková P; Sour A; Helm L; Tóth E; Kotek J; Lukes I; Merbach AE Dalton Trans; 2006 Jul; (28):3399-406. PubMed ID: 16832488 [TBL] [Abstract][Full Text] [Related]
18. Large relaxivity enhancement of paramagnetic lipid nanoparticles by restricting the local motions of the Gd(III) chelates. Kielar F; Tei L; Terreno E; Botta M J Am Chem Soc; 2010 Jun; 132(23):7836-7. PubMed ID: 20481537 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and physicochemical characterization of two gadolinium(III) TTDA-like complexes and their interaction with human serum albumin. Ou MH; Tu CH; Tsai SC; Lee WT; Liu GC; Wang YM Inorg Chem; 2006 Jan; 45(1):244-54. PubMed ID: 16390062 [TBL] [Abstract][Full Text] [Related]
20. Separation and characterization of the two diastereomers for [Gd(DTPA-bz-NH2)(H2O)]2-, a common synthon in macromolecular MRI contrast agents: their water exchange and isomerization kinetics. Burai L; Tóth E; Sour A; Merbach AE Inorg Chem; 2005 May; 44(10):3561-8. PubMed ID: 15877439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]