These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 12203353)
21. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments. Sarotti AM Org Biomol Chem; 2013 Aug; 11(29):4847-59. PubMed ID: 23779148 [TBL] [Abstract][Full Text] [Related]
22. Experimental and theoretical NMR study of selected oxocarboxylic acid oximes. Malek K; Vala M; Kozłowski H; Proniewicz LM Magn Reson Chem; 2004 Jan; 42(1):23-9. PubMed ID: 14745813 [TBL] [Abstract][Full Text] [Related]
23. GIAO DFT 13C/15N chemical shifts in regioisomeric structure determination of fused pyrazoles. Chimichi S; Boccalini M; Matteucci A; Kharlamov SV; Latypov SK; Sinyashin OG Magn Reson Chem; 2010 Aug; 48(8):607-13. PubMed ID: 20589725 [TBL] [Abstract][Full Text] [Related]
24. Accurate calculation, prediction, and assignment of 3He NMR chemical shifts of helium-3-encapsulated fullerenes and fullerene derivatives. Wang GW; Zhang XH; Zhan H; Guo QX; Wu YD J Org Chem; 2003 Aug; 68(17):6732-8. PubMed ID: 12919041 [TBL] [Abstract][Full Text] [Related]
25. Molecular structure and vibrational and chemical shift assignments of 3-(2-hydroxyphenyl)-4-phenyl-1H-1,2,4-triazole-5-(4H)-thione by DFT and ab initio HF calculations. Avci D; Atalay Y; Sekerci M; Dinçer M Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):212-7. PubMed ID: 19264542 [TBL] [Abstract][Full Text] [Related]
26. Solution structure of succinylacetone, an unsymmetrical beta-diketone, as studied by 13C NMR and GIAO-DFT calculations. Bal D; Kraska-Dziadecka A; Gryff-Keller A J Org Chem; 2009 Nov; 74(22):8604-9. PubMed ID: 19839628 [TBL] [Abstract][Full Text] [Related]
27. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols. Abraham RJ; Mobli M Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232 [TBL] [Abstract][Full Text] [Related]
28. A joined theoretical-experimental investigation on the 1H and 13C NMR signatures of defects in poly(vinyl chloride). d'Antuono P; Botek E; Champagne B; Wieme J; Reyniers MF; Marin GB; Adriaensens PJ; Gelan JM J Phys Chem B; 2008 Nov; 112(47):14804-18. PubMed ID: 18975894 [TBL] [Abstract][Full Text] [Related]
29. Modeling the (13)C chemical-shift tensor in organic single crystals by quantum mechanical methods: finite basis set effects. Sefzik TH; Fidler JM; Iuliucci RJ; Facelli JC Magn Reson Chem; 2006 Mar; 44(3):390-400. PubMed ID: 16477672 [TBL] [Abstract][Full Text] [Related]
30. Quantum mechanical calculations of conformationally relevant 1H and 13C NMR chemical shifts of N-, O-, and S-substituted calixarene systems. Bifulco G; Riccio R; Gaeta C; Neri P Chemistry; 2007; 13(25):7185-94. PubMed ID: 17566131 [TBL] [Abstract][Full Text] [Related]
31. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids. Kolehmainen E; Tuppurainen K; Lanina SA; Sievänen E; Laihia K; Boyarskiy VP; Nikiforov VA; Zhesko TE Chemosphere; 2006 Jan; 62(3):368-74. PubMed ID: 15992857 [TBL] [Abstract][Full Text] [Related]
32. Comparison of GIAO and CSGT for calculating (13) C and (15) N nuclear magnetic resonance chemical shifts of substituent neutral 5-aminotetrazole and 5-nitrotetrazole compounds. Li Y; Gao H; Zhang J; Li S; Zhou W Magn Reson Chem; 2012 Jan; 50(1):16-21. PubMed ID: 22271300 [TBL] [Abstract][Full Text] [Related]
33. Predicting 9Be nuclear magnetic resonance chemical shielding tensors utilizing density functional theory. Plieger PG; John KD; Keizer TS; McCleskey TM; Burrell AK; Martin RL J Am Chem Soc; 2004 Nov; 126(44):14651-8. PubMed ID: 15521785 [TBL] [Abstract][Full Text] [Related]
34. Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes. d'Antuono P; Botek E; Champagne B; Spassova M; Denkova P J Chem Phys; 2006 Oct; 125(14):144309. PubMed ID: 17042592 [TBL] [Abstract][Full Text] [Related]
35. Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks. Jalali-Heravi M; Masoum S; Shahbazikhah P J Magn Reson; 2004 Nov; 171(1):176-85. PubMed ID: 15504698 [TBL] [Abstract][Full Text] [Related]
36. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805 [TBL] [Abstract][Full Text] [Related]
37. Theoretical investigation on multinuclear NMR chemical shifts of some tris(trifluoromethyl)boron complexes. Zhang J; Cai S; Chen Z Magn Reson Chem; 2009 Aug; 47(8):629-34. PubMed ID: 19384915 [TBL] [Abstract][Full Text] [Related]
38. 13C GIAO DFT calculation as a tool for configuration prediction of N-O group in saturated heterocyclic N-oxides. Pohl R; Potmischil F; Dračínský M; Vaněk V; Slavětínská L; Buděšínský M Magn Reson Chem; 2012 Jun; 50(6):415-23. PubMed ID: 22539412 [TBL] [Abstract][Full Text] [Related]
39. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. Smith SG; Goodman JM J Am Chem Soc; 2010 Sep; 132(37):12946-59. PubMed ID: 20795713 [TBL] [Abstract][Full Text] [Related]
40. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH. Straka M; Lantto P; Räsänen M; Vaara J J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]