These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 12203818)

  • 21. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE; Ardigò LP; Saibene F
    Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Economical Speed and Energetically Optimal Transition Speed Evaluated by Gross and Net Oxygen Cost of Transport at Different Gradients.
    Abe D; Fukuoka Y; Horiuchi M
    PLoS One; 2015; 10(9):e0138154. PubMed ID: 26383249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait-specific energetics contributes to economical walking and running in emus and ostriches.
    Watson RR; Rubenson J; Coder L; Hoyt DF; Propert MW; Marsh RL
    Proc Biol Sci; 2011 Jul; 278(1714):2040-6. PubMed ID: 21123267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental estimation of energy absorption during heel strike in human barefoot walking.
    Baines PM; Schwab AL; van Soest AJ
    PLoS One; 2018; 13(6):e0197428. PubMed ID: 29953479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inverted pendular running: a novel gait predicted by computer optimization is found between walk and run in birds.
    Usherwood JR
    Biol Lett; 2010 Dec; 6(6):765-8. PubMed ID: 20484229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steep (30°) uphill walking vs. running: COM movements, stride kinematics, and leg muscle excitations.
    Whiting CS; Allen SP; Brill JW; Kram R
    Eur J Appl Physiol; 2020 Oct; 120(10):2147-2157. PubMed ID: 32705391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY; Usherwood JR
    J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cost of leg forces in bipedal locomotion: a simple optimization study.
    Rebula JR; Kuo AD
    PLoS One; 2015; 10(2):e0117384. PubMed ID: 25707000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constrained optimization in human running.
    Gutmann AK; Jacobi B; Butcher MT; Bertram JE
    J Exp Biol; 2006 Feb; 209(Pt 4):622-32. PubMed ID: 16449557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait transition cost in humans.
    Usherwood JR; Bertram JE
    Eur J Appl Physiol; 2003 Nov; 90(5-6):647-50. PubMed ID: 14564525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is natural variability in gait sufficient to initiate spontaneous energy optimization in human walking?
    Wong JD; Selinger JC; Donelan JM
    J Neurophysiol; 2019 May; 121(5):1848-1855. PubMed ID: 30864867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed.
    Monte A; Tecchio P; Nardello F; Bachero-Mena B; Ardigò LP; Zamparo P
    Exp Physiol; 2023 Jan; 108(1):90-102. PubMed ID: 36394370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanics and energetics of human walking and running: a joint level perspective.
    Farris DJ; Sawicki GS
    J R Soc Interface; 2012 Jan; 9(66):110-8. PubMed ID: 21613286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual flow influences gait transition speed and preferred walking speed.
    Mohler BJ; Thompson WB; Creem-Regehr SH; Pick HL; Warren WH
    Exp Brain Res; 2007 Aug; 181(2):221-8. PubMed ID: 17372727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.