These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12203969)

  • 1. Selenocysteine derivatives for chemoselective ligations.
    Gieselman MD; Zhu Y; Zhou H; Galonic D; van der Donk WA
    Chembiochem; 2002 Aug; 3(8):709-16. PubMed ID: 12203969
    [No Abstract]   [Full Text] [Related]  

  • 2. The selenocysteine-substituted blue copper center: spectroscopic investigations of Cys112SeCys Pseudomonas aeruginosa azurin.
    Ralle M; Berry SM; Nilges MJ; Gieselman MD; van der Donk WA; Lu Y; Blackburn NJ
    J Am Chem Soc; 2004 Jun; 126(23):7244-56. PubMed ID: 15186162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expressed protein ligation for metalloprotein design and engineering.
    Clark KM; van der Donk WA; Lu Y
    Methods Enzymol; 2009; 462():97-115. PubMed ID: 19632471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a selenocysteine-containing peptide by native chemical ligation.
    Gieselman MD; Xie L; van Der Donk WA
    Org Lett; 2001 May; 3(9):1331-4. PubMed ID: 11348227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies.
    Levengood MR; van der Donk WA
    Nat Protoc; 2006; 1(6):3001-10. PubMed ID: 17406561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the 21st amino acid-purifying and labeling proteins by selenolate targeting.
    Johansson L; Chen C; Thorell JO; Fredriksson A; Stone-Elander S; Gafvelin G; Arnér ES
    Nat Methods; 2004 Oct; 1(1):61-6. PubMed ID: 15782154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An engineered azurin variant containing a selenocysteine copper ligand.
    Berry SM; Gieselman MD; Nilges MJ; van Der Donk WA; Lu Y
    J Am Chem Soc; 2002 Mar; 124(10):2084-5. PubMed ID: 11878940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved definition of the RNA-binding specificity of SECIS-binding protein 2, an essential component of the selenocysteine incorporation machinery.
    Cléry A; Bourguignon-Igel V; Allmang C; Krol A; Branlant C
    Nucleic Acids Res; 2007; 35(6):1868-84. PubMed ID: 17332014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of selenocysteine and selenomethionine derivatives from sulfur-containing amino acids.
    Iwaoka M; Ooka R; Nakazato T; Yoshida S; Oishi S
    Chem Biodivers; 2008 Mar; 5(3):359-74. PubMed ID: 18357559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early steps in the unfolding of azurin.
    Rizzuti B; Daggett V; Guzzi R; Sportelli L
    Biochemistry; 2004 Dec; 43(49):15604-9. PubMed ID: 15581373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
    Chavatte L; Brown BA; Driscoll DM
    Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering new metal specificity in EF-hand peptides.
    Le Clainche L; Plancque G; Amekraz B; Moulin C; Pradines-Lecomte C; Peltier G; Vita C
    J Biol Inorg Chem; 2003 Feb; 8(3):334-40. PubMed ID: 12589569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and semisynthesis of selenopeptides and selenoproteins.
    Liu J; Cheng R; Rozovsky S
    Curr Opin Chem Biol; 2018 Oct; 46():41-47. PubMed ID: 29723718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic study on selenocystine-containing peptides.
    Koide T; Itoh H; Otaka A; Yasui H; Kuroda M; Esaki N; Soda K; Fujii N
    Chem Pharm Bull (Tokyo); 1993 Mar; 41(3):502-6. PubMed ID: 8477500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation.
    Seyedsayamdost MR; Yee CS; Stubbe J
    Nat Protoc; 2007; 2(5):1225-35. PubMed ID: 17546018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction potential tuning of the blue copper center in Pseudomonas aeruginosa azurin by the axial methionine as probed by unnatural amino acids.
    Garner DK; Vaughan MD; Hwang HJ; Savelieff MG; Berry SM; Honek JF; Lu Y
    J Am Chem Soc; 2006 Dec; 128(49):15608-17. PubMed ID: 17147368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the redox potential of the protein azurin and some mutants.
    van den Bosch M; Swart M; Snijders JG; Berendsen HJ; Mark AE; Oostenbrink C; van Gunsteren WF; Canters GW
    Chembiochem; 2005 Apr; 6(4):738-46. PubMed ID: 15747387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of hydrogen bonding at the active site of a cupredoxin: the Phe114Pro azurin variant.
    Yanagisawa S; Banfield MJ; Dennison C
    Biochemistry; 2006 Jul; 45(29):8812-22. PubMed ID: 16846224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting ligation at selenomethionine: Insights into native chemical ligation at selenocysteine and homoselenocysteine.
    Dardashti RN; Metanis N
    Bioorg Med Chem; 2017 Sep; 25(18):4983-4989. PubMed ID: 28526476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral seleno-amines from indium selenolates. A straightforward synthesis of selenocysteine derivatives.
    Braga AL; Schneider PH; Paixão MW; Deobald AM; Peppe C; Bottega DP
    J Org Chem; 2006 May; 71(11):4305-7. PubMed ID: 16709076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.